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FOREWORD

Compiled in this volume are twelve papers from agencies working with the

Guidance Laboratory of NASA-ERC. These papers concern special studies in the

disciplines of guidance theory, trajectory analysis, and celestial mechanics. They
include:

1. A presentation of a method for classifying and analyzing gttidance

modes, together with a survey and classification of existing modes;

2. A development of a minimum fuel guidance solution for certain

hyperbola-circle transfers;

3. A presentation of generalized necessary conditions for a minimizing

control function;

4. A demonstration of how many non-standard problems in control

theory can be transformed to "ordinary differential form" and

treated in a standard way;

5. A study of impulsive transfer optimization, presenting a computational

scheme for determining optimum n-impulse trajectories;

A demonstration of the utility of a group theoretical principle in

solving non-homogeneous linear systems of differential equations

and an application to the perturbation of elliptic motion;

7. A derivation of a useful form of the Sundman inequality;

8. A study of a formal approximate decoupling of the n-body problem

into a k-body problem (k < n) and an (n - k + 1) - body problem;

9, A presentation of theory for the solution of the perturbation problem

for a system of non-linear differential equations under general

linear two-point boundary conditions;

10.
A presentation of an algorithm for automatic computation of

derivatives of a composite function and its application to a power

series solution of a celestial mechanics problem;

iii



11.Apresentationofresultsonthelong-termbehaviorofcloselunar
orbiters;

12.Ananalyticalstudyofthethree-dimensionalstabilityofmotionofa
particlenearL4inanon-linearEarth-moongravitationalfield.

Thefirstpaperprovidesaframeworkenablingmanyspecificstudiesto
resultinanaccumulatingbodyofguidancemodeinformation,usefultoboththe
guidancetheoristinresearchwork,andtheguidancesoftwareengineerinplanning
anddevelopmentwork.

Thesecnndpaperprovidesoneguidancesolutionofinteresttotheguidance
theorist,andcouldformthebasisforaguidancemodetobestudiedfromthe
viewpointofthefirstpaper.

Thethirdpaperprovidesthetrajectoryanalystwithtoolsforattackinga
broaderclassofoptimizationproblems,andthefourthpaperpointsoutawayhe
mayprofitablyapplyalargebodyofresultstohisproblemswhicharenotofthe
"ordinarydifferential"type.

Thefifthpaperaidsinthesearchforoptimumimpulsiveorbittransfers,
andthesixththroughtheninthpaperscontributecelestialmechanicstheoryuseful
towardthesolutionofproblemsoccurringinmissiondesign,orbitdeterminationor
orbitprediction.

Thetenthpapersupportsbothautomaticsymbolicprocessingeffortsand
computationalrequirementsintrajectoryanalysisandcelestialmechanics.

Thelasttwopapersaidthetrajectoryanalystormissiondesignerinterested
instableorbitsnearthemoonoritsequilaterallibrationpoints.
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SUMMARY

This volume contains technical papers on NASA-

sponsored studies in the areas of trajectory analysis

and guidance theory. These papers cover the period

beginning 1 October 1966 and ending 1 October 1967.

The technical supervision of this work is under the

personnel of the Guidance Laboratory at NASA-ERC.
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INTRODUCTION

This document contains twelve technical papers covering work sponsored by

the Guidance Laboratory of the NASA Electronics Research Center (ERC). The
papers are concerned with guidance theory, trajectory analysis, and celestial

mechanics.

The following table presents the contributing institutions and the discipline of

the paper.

Institution/ Author Discipline

Company

TRW

AMA

Northeastern Univ.

Princeton Univ.

CRA

IBM

Stanford Univ.

C.G. Pfeiffer

T.N. Edelbaum

J. Warga

P.M. Lion
**

D. Lewis/P. Mendelson

P. Sconzo/D. Valenzuela

J. Vaguers/H.B. Schechter

Guidance Theory

Guidance Theory
*

Trajectory Analysis

Trajectory Analysis

Celestial Mechanics

Celestial Mechanics

Celestial Mechanics

* Two papers

** Four papers

Synopses of the individual papers are presented below:

Paper No. 1

The first paper by C.G. Pfeiffer of TRW surveys the guidance modes

presently in use or in development, with the objective of appraising their usefullness

when applied to a unified guidance concept. Unified guidance refers to the application

of one hardware system as well as one overall computational scheme for guidance

in all phases of a mission.



INTRODUC TION

The breadth of the study called for, and the importance of the consequences

drawn from it, made it advisable to review critically concepts and terms in use in

space guidance and to update definitions where necessary. Thus this paper starts

with defining terms such as guidance, guidance mode, unified guidance and others.

The paper also elaborates on the relationship of guidance to navigation.

Chapter I:II then gives a rather comprehensive survey of presently known

guidance modes (USA-developed) and categorizes them according to various principles

of division.

For the evaluation of guidance modes in general, as well as with respect to

the applicability to unified guidance, measures of performance are suggested in the

following chapter. These concern such criteria as optimality, accuracy, applicability,

flexibility, and others.

The paper does not aim at evaluating all the listed modes, but rather tries to

lay the groundwork for such an attempt.

Paper No. 2

The second paper, a technical progress report from Analytical Mechanics

Associates, Inc., by T.N. Edelbaum, presents a minimum fuel guidance procedure.

It presents a first-order impulsive correction procedure for mid-course guidance,

along with a procedure for establishing approximate equations of motion which are

then integrated. This guidance procedure is classified in the paper by C. Pfeiffer

(No. 1 in this document).

Paper No. 3

The third paper, written by Jack Warga of Northeastern University, adds

directly to the results presented by him in the first compilation in this series.* In

the referenced paper, Prof. Warga presented existence and approximation theorems

for minimizing controls applicable to a general class of optimization problems. The

present paper contains a statement and proof of some corresponding conditions that

are necessary for the solutions to be minimizing.

* NASA, First Compilation of Papers on Trajectory Analysis and Guidance Theory,

NASA Scientific and Technical Information Division, Wash., D. C., 1967.



INTRODUCTION

Paper No. 4

In the fourth paper, Prof. Warga has presented some observations that

appear to have been overlooked by some workers in mathematical control theory

faced with Droblems that are not of the "ordinary differential" type. He illustrates

with three specific examples of how one may transform the problem to one which is

immediately treatable with classical results of control theory.

Paper No. 5

The fifth technical paper is concerned with trajectory analysis. Written by

P.M. Lion of Princeton University, it presents a study of impulsive trajectory
calculations. It is based on Lawden' s primer vector and presents necessary

conditions for a trajectory to be optimum. This primer vector has significance

for non-optimal trajectories. When these ideas are combined, a computational

scheme for determining optimum n-impulse trajectories is suggested.

The remaining papers are on various aspects of celestial mechanics.

Paper No. 6

The sixth technical paper, written by D.C. Lewis and Pinchas Mendelson,

formerly of Control Research Associates and now of Zetesis Corp., exploits a

principle which considers a system of differential equations invariant under continuous

and differentiable group transformation. It shows that it is possible to write down

a number of linearly independent solutions of the variational equations equal to the

number of independent parameters of the group. This exploitation is used to present

several solutions to the Keplerian case.

Paper No. 7

The seventh technical paper, written by D.C. Lewis, and entitled, "Comments

on the Sundman Inequality," presents some preliminary theorems in vector analysis

and applies them in developing the Sundman inequality in the form used in former

papers.
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Paper No. 8

The eighth paper, also written by D.C. Lewis, discusses partial and complete

decoupling of a n-body problem into a k-body problem (k < n) by use of developed

parameters of the problem. Theory is presented to develop the so-called quasi-

first integrals of the partially decoupled system from the first integrals of the

unreduced system.

Paper No. 9

The ninth paper, also written by D.C. Lewis, discusses the perturbation

problem for a system of non-linear differential equations. The problem is reduced

to solving k "bifurcation" equations where k is the degeneracy of the problem.

A Green' s matrix for linear systems with boundary conditions of arbitrary degeneracy

is constructed.

Paper No. 10

The tenth paper, written by P. Sconzo and D. Valenzuela of IBM, presents

work done on automatically computing the derivatives of a function by the recursive

SchlSmilch-Ces_ro formulation. The general expression obtained was used to

construct the power series expansions in the time variable of those powers of the

radius vector which appears most frequently in celestial mechanics.

Paper No. 11

The eleventh paper, written by J. Vagners of the University of Washington

(Stanford University), presents results on the long-term behavior of close lunar

orbiters. A Hamiltonian is presented with the short and medium terms removed.

The long-period motion is thus analyzed and results presented.

Paper No. 12

The last paper in this report was written by Hans B. Schechter of Stanford

University. This paper presents an analytic study of the three-dimensional stability

of motion of a particle near L 4 in a non-linear Earth-moon force field. A linear

solar gravitational field distribution is superimposed on the Earth-moon field. The

long-period features of the motion of the particle are studied.
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Two internal publications authored or co-authored by members of the

sponsoring laboratory and in the subject technical fields have appeared since the

last compilation. These are listed below with their abstracts.

Miner, W.E., and J.F. Andrus: Necessary Conditions for Optimal

Lunar Trajectories with Discontinuous State Variables and Inter-

mediate Point Constraints. NASA TM X-1353, April 1967.

ABSTRACT

The guidance regime for an optimal multi-stage lunar trajectory is derived

by applying the mathematics of the calculus of variations as established by Denbow

for the generalized problem of Bolza. The steering angle programs for four

constant thrust level phases and the times to initiate and terminate the two coast

phases are determined in order to place maximum payload into a specified lunar

orbit. The problem considered here is to determine an optimal trajectory

consisting of six sub-arcs utilizing three vehicle stages on which maximum payload

is transported from an exo-atmospheric point near the Earth to a specified lunar

orbit. The intermediate point constraints include two points at which stages are

separated and mass discontinuities occur, an Earth parking orbit of specified

energy and angular momentum magnitude, and four thrust magnitude levels. The

Euler-Lagrange equations determine the optimal steering for the thrusting phases

and the Denbow transversality equations are used to calculate the discontinuities at

the ends of the sub-arcs. This method is applied here and the equations necessary

to solve this problem using a high-speed computer are derived.

Hoelker, R.F. : Numerical Studies of Transitions between the Restricted

Problem of Three Bodies and the Problem of Two Fixed Centers and

the Kepler Problem. NASA TM X-1465, November, 1967.

ABSTRACT

For the comparison of the trajectories of the two fixed-center problem with

those of the restricted problem of three bodies, fields of trajectories are numerically

computed for six initial position conditions, all starting on the line of masses and
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perpendicularly to this line. The transition is studied by varying stepwise, for these

fields, the rate of revolution of the primaries from zero to the equilibrium rate of

circular motion.

For the investigation of the behavior of trajectories in the transition from the

Kepler problem to the restricted problem, the Kepler orbits are considered in a

coordinate system rotating at the rate determined by the continuation of this system

into that of the restricted problem. Transition characteristics are shown on samples

of periodic orbits and of trajectory fields. In particular, the continuous transition of

a family of Kepler orbits into periodic orbits about the smaller primary as well as

about the L3-1ibration point is demonstrated.
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Head, Mathematical Physics Section
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GUIDANCE MODES

An Analysis of Guidance Modes I

C. G. Pfeiffer 2

i. Introduction

Guidance theory is concerned with the solution of a two-point boundazj

value problem, which arises when one attempts to control 3 the translation

motion of a space vehicle so as to attain desired end conditions at mission

completion. That is, given the initial conditions, such as the inertial

position and velocity of the launch site, and the desired end conditions,

such as the orbital elements of the final satellite orbit about the moon

or planet, and a description of the characteristics of the rocket engines

and/or aerodynamic lift/drag maneuvers which supply the controlling

accelerations during the mission, the guidance analyst must design an

algorithm for calculating the translational accelerations to be applied as

the vehicle moves toward the final time. Then:

Definition i: Given a mathematical model of the motion of a space

vehicle, a description of the translation acceleration which can be

commanded by the guidance system, and an estimate of the state of the

overall dynamic system, guidance is the task of calculating and executing

a realizable acceleration profile which will cause the trajectory of the

space vehicle to attain desired end conditions, where

Definition 2: The state of the space vehicle system consists of the

position and velocity of the vehicle, the parameters determining the

vehicle performance capability, and the parameters determining the

gravitational and atmospheric accelerations.

The estimate of the state is obtained from the navigation system, where

Definition 3: Navigation is the task of estimating the state of the

space vehicle system from sensed data, such as the first and second integrals

of on-board accelerometer data, and/or earth-based tracking data, and/or

on-board observation of a celestial reference.

Definition #i states that guidance encompasses guidance theory as

well as the mechanization of the theory. Guidance mechanization usually

concerns the guidance theoretician only to the extent that it affects his

analytical treatment of the problem. For example, he usually assumes that

the attitude control problem can be ignored, where

iAcknowledgement: This paper was written under NASA contract NAS 12-593,

administered by Electronics Research Center, Cambridge, Massachusetts.

The classifications of guidance modes and measures of performance were

suggested by Mr. W. E. Miner and Mr. D. H. Schmieder of the Guidance Theory

and Trajectory Analysis Branch of ERC.

2Head, Mathematical Physics Section, Guidance and Analysis Department,

TRW Systems, Redondo Beach, California.

3Guidance theory is a special case of final value control theory.
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Definition 4: Attitude Control is the task of attaining and stab-

ilizing the vehicle in the attitude configuration called for by the

guidance system.

This approach is reasonable for most applications, because the guidance

and attitude control response times are usually so different that there is

negligible interaction.* On the other hand, the analytical treatment will

certainly be dependent upon the functional form of the guidance accelerations,

which might be applied in the form of impulsive changes of velocity, realized

by thrusting with a relatively high acceleration level for a relatively

short time; by starting, throttling, steering and/or shutting off a rocket

engine which thrusts for a relatively long period of time, and/or by applying

lift and/or drag accelerations during motion in the atmosphere, realized

by commanding motion of aerodynamic surfaces. With these considerations in

mind, the analyst seeks to design a guidance "mode", where

Definition 5: A guidance mode is a policy for calculating the para-

meters and functions which will accomplish the guidance task.

Since navigation information will be gathered during the mission in order to

update the estimate of the state of the system, a guidance mode must be

capable of acting as a real-time feedback final-value control law.

In general, there exists an infinite variety of guidance modes which

will accomplish mission objectives. Thus one seeks an optimal guidance

policy which satisfies the end conditions while minimizing some performance

index, such as engine propellant expenditure, or else one pre-specifies a

functional form which is near-optimal. Present practice is to simplify

the overall optimization problem by treating it as a sequence of two-point

boundary value problems. That is, the overall mission is thought of as a

sequence of "phases", usually characterized by the means available for

applying the guidance accelerations. The objective of the guidance system

for any given phase is to attain an intermediate set of pre-specified end

conditions. For example, a guidance phase might consist of transfer by

means of relatively high rocket thrust acceleration from a near-earth

circular parking orbit to a specified earth-escape hyperbola. (A more

detailed description of guidance phases is given in Appendices A and B).

Such intermediate end conditions must be obtained by a "targeting" method

(discussed in Appendix C). The imposition of these constraints on the

overall trajectory leads to a sub-optlmal overall guidance law, but, since

each phase can be treated individually, the design of appropriate guidance

modes is much simplified. In practice, guidance modes for the individual

phases are usually quite different in form. Considering also the diverse

forms of guidance mechanization employed for the various phases, it is true

*Note that stability is not an important consideration in the guidance

problem, for the duration of guidance is finite and short compared to the

response time of the dynamic system defined by the translational equations

of motion. This is not true for the attitude control problem, indeed,

stability is usually the primary design goal.

I0



GUIDANCE MODES

that essentially different guidance systems are presently used on a given
mission.

It seems clear that it would be desirable to design a unified

guidance system for future applications, where

Definition 6: A unified guidance system is one capable of guiding
all phases of a given mission.

Toward that end, it is the objective of this paper to provide a cursory

survey of the present state of guidance theory (see also References 1-4),

to describe and classify existing guidance modes, and to define some quali-

tative measures of their relative performance. The purpose of such a study

is to aid in the rational selection and/or development of guidance modes

for future missions, to facilitate the synthesis of the chosen modes into

a unified guidance concept, and to point out problem areas where further

development is required.

2. The Separation of Guidance and NaviKatlon

Implicit in the definitions of guidance and navigation is the assump-

tion that these two problems can be treated separately. That is, in present

practice the guidance theorist designs a guidance mode by assuming that

the state is known perfectly, and for real-time applications employs the

estimated state in place of its true value. This assumption, which is

essential to a meaningful discussion of existing guidance modes, requires
further clarification.

Strictly speaking, the deterministic derivation of a guidance mode

is not correct, for the predicted end conditions which determine the guid-

ance functions become random variables if there are random estimation

errors and random systematic disturbances to the trajectory. In effect,

the state of the system can no longer be defined simply by position, velocity,

and system parameter vectors. Instead, the state must be thought of as the

expected value of these quantities plus all the statistical moments of their

distribution. In other words, the state can only be described by the condit-

ional probability density function of the state, given the navigation data.

From the point of view of guidance optimization theory, the random behavior

of the dynamic system implies that there no longer exists a field of

solutions which are the characteristics of the deterministic Hamilton-Jacobi

partial differential equation. Thus, conceptually at least, the notion of

a predictable reference trajectory has to be abandoned.

Simple examples of stochastic control problems (see Appendix D) would

seem to indicate that the deterministic guidance analysis is not at all

valid for realistic problems. As a practical matter, however, stochastic

guidance analysis is not required for those applications where (i) an

apriori reference trajectory is available, and (2) the random navigation

errors and random systematic errors are small. That is, the deterministic

analysis applies when the first variation (or perhaps the first and second

variations ) about some reference trajectory is the dominant consideration.

In a first variation analysis the random errors enter linearly and the

deterministic approach can be theoretically Justlfied (see work by Joseph,

Lou, and Gankel). Consideration of the second variation (or second and

third variations) does not change this conclusion. It then follows that

11



GUIDANCE MODES

results similar to the deterministic case are obtained but with additional

terms which can be interpreted as non-linear corrections or biases which

can be calculated. Such assumptions can be thought of as devices to sim-

plify the difficult computational problem of computing expectations.

The assumptions required to Justify deterministic guidance analysis

usually apply to those phases of a space mission where continuous guidance

accelerations are applied, but stochastic considerations become important

when the guidance is applied in the form of a sequence of small velocity

impulses at unspecified times. The difficulty in this case is finding the

times of application. Present practice for the Ranger-Mariner-Surveyor

type of mission (Reference 5) is to pre-specify these times by heuristic

or empirical rules, and to calculate the real time corrections with a

linearized deterministic rule. The non-linear effects of the corrections

are treated by an iterative technique. Stochastic considerations are intro-

duced by employing a non-linear maximum likelihood estimator in the naviga-

tion equations, and appropriately modifying the targeted end conditions so

as to take into account the statistics of the estimation and systematic

errors. Small real time (adaptive) variations in the time of application

of the corrections are sometimes allowed. This approach demonstrably works

well for many applications.

One concludes, then, that the separate treatment of the guidance and

navigation problems can indeed be Justified for most present day space

missions, and that deterministic guidance analysis is valid, if appropriate

approximations are made and if appropriate constraints are placed upon the

guidance policy.

3. Description and Classification of Typical Guidance Modes

The primary purpose of this paper is to classlfv typical guidance

modes, and to define qualitative measures of their performance (see Intro-

duction). In this part, various guidance modes will be classified according

to the mathematical approximations and/or assumptions introduced in their

derivation (Table i). Although many of the methods discussed have never

been used in real time applications, they must be considered as possible

modes for future missions.

Class I: Precise Model of Dynamic System - The guidance mode is based

upon a mathematical model representing all known accelerations on the vehicle

which are numerically significant.

Class i.i: Expansion of Solutions - The Class i guidance mode gene-

rates the control as an explicit function of the state for all states in

some region of applicability.

Class i.i.I: Linear Expansion - The control is a linear function of

the state. Examples are:

a) delta guidance - guide to null deviations (6)

from a standard trajectory

b) lamda matrix guidance (Reference 6)

e) second variation guidance (References 7,8)

d) impluse velocity-to-be-gaired (References 3,5)

e) steering to velocity-to-be-gained (Reference 3)

12
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Class 1.1.2: Non-Linear Expansion - The control is a non-linear

function of the state. Examples are:

a) dynamic programming (Reference 9)

b) solution of Hamilton-Jaeobi partial differential

equation

c) series expansion of equations of motion

d) series expansion of solutions (Reference i0)

e) series expansion of Hamiltonian (Reference ii)

Class 1.2: Successive Approximations - The class 1 guidance mode

generates the control function by successively applying in real time an

algorithm which converges after some number of iterations to the optimal
control.

Class 1.2.1: Direct Methods - A suitable approximate ordinary

extremum problem is defined in which only a finite number (N) of parameters

is to be determined, and then the class 1.2 guidance mode generates the

control by passing to the limit as N ÷ _ in the solution of the approximate

problem. Essentially, a minimizing sequence of control functions is con-

structed, and the desired solution is obtained by a limiting process based

upon this sequence (Reference 12, pp 174-175). Some approaches which might
be used are:

a) steepest descent (References 13,14)

b) Rayleigh-Rftz method (Reference 12, pp 175-176)

c) method of finite differences (Reference 12,

pp 176-177)

Class 1.2.2: Indirect Methods - The class 1.2 guidance mode succes-

sively approximates in real time the control which satisfies optimality

conditions and the desired end conditions. Examples are:

a) optimal impulsive velocity-to-be-gained (Ref-

erence 5)

b) second variation control (References 7,8)

c) sweep method (Reference 15)

d) quasilinearization (Reference 16)

e) quasi-second order approximations (Reference 17)

Class 2: Approximate Model of System Dynamics - The guidance mode

is based upon an approximate mathematical model of the vehicle dynamics

and/or the gravitational and atmospheric acceleration. Essentially, approx-

imations are introduced into the physical model in order to simplify the

mathematical solution of the equations of motion.

Class 2.1: Closed Form - The Class 2 guidance mode yields a closed

form solution for the control in terms of the given initial conditions and

the desired end conditions.

Class 2.1.1: Approximation of Environmental Accelerations - The

derivation of the class 2.1 guidance mode follows from approximating the

first and second integrals of the gravitational, drag, and/or lift acceler-

ations between the initial add final times as relatively simple functions of

initial and end conditions. Examples are:

a) iterative guidance mode (Reference 18)

h) MIT explicit guidance (Reference 19)

13
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c) TRW explicit guidance (Reference 20)

d) Lewis Research Center explicit guidance (Reference 21)

e) Aerospace explicit guidance (Reference 22)

f) Robbins explicit guidance (Reference 23)

Class 2.1.2: Conic Model - The derivation to the class 2.1

guidance mode is based upon the assumption that the orbit desired at thrust

termination is a conic, and that thrust acts for a relatively short

duration of time. Examples are:

a) impulsive veloclty-to-be gained (Reference 3)

b) steering to velocity-to-be gained (Reference 3)

Class 2.2: Successive Approximation of Closed Form Guidance The

Class 2 guidance mode employs algorithms similar to those of Class 2.1,

but the errors due to these approximations are iteratively reduced in real

time.

Class 2.2.1: Successive Approximation of Environmental Accelerations -

The approximated values of the acceleration integrals are successively

improved in real time by evaluating the integrals on the current real-time

predicted trajectory. No examples of this technique are known to the

author.

Class 2.2.2: Successive Approximation of Conic Model - The effects

of neglected terms in the conic model are calculated in real time as time

varying perturbations acting on the current approximate trajectory, and

these effects are introduced into the guidance equations. This approach

is similar to general perturbation techniques well-known in celestial

mechanics, but no applications to the real-time guidance problem are known

to the author.

4. Measures of Performance

The class of closed form guidance modes has recently received much

attention, because one obtains a versatile control law which can treat

large perturbations and yet requires relatively little preflight calculation.

This approach has limited application, however, because the simplifying

approximations required for the derivation cannot be Justified in general.

For example, at any iteration of the guidance calculation it may be assumed

that the gravitational acceleration for the remainder of the flight can

be approximated by a constant vector. Such an approximation obviously

works well when applied to short powered flight arcs, but for long arcs

it can lead to serious degradation of performance. Some one of the Class

i modes could be used to eliminate such difficulties, but then extensive

preflight calculation and storage might be necessary, or,if a linear

guidance law is employed, the performance could be poor in the presence

of large perturbations. Thus the choice of a guidance mode is often

ad hoc, and one must consider many factors. Some measures of performance

are :

i. optimality - given that there is a performance index to be

minimized, say propellant expenditure, how does the obtained

value of the performance index compare to the theoretical

minimum?

14
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2. accuracy given that approximations are introduced into the

derivation and mechanization of the guidance equations, what

are the resulting errors in the desired terminal conditions?

These errors can be classified according to:

2.1 approximation errors due to analytic approximations

introduced into the derivation of the guidance equations.

2.2 computer errors - due to the inaccuracies of the numerical

algorithms used to implement the guidance equations

(truncation and roundoff).

2.3 mechanization errors - due to the inability of the vehicle

to physically respond to the guidance commands.

There are also navigation errors, but, insofar as the guidance and

navigation problems are separable (i.e., assuming superposition

of effects), these errors need not be considered in the design

of a guidance mode.

3. region of applicability - what is the range of perturbations

which can be adequately treated by the guidance mode?

4. computer factors what are the real time on-board and/or

earth-based computer requirements, in particular, how much storage

space is required, what is the length of the computing cycle for

each iteration of the guidance equations, and how complex must

the computer be?

5. preflight preparation - what is the cost in time and money of

preflight preparation of the guidance equations, in particular,

how long does it take to prepare the guidance system to

accomplish a given mission? (the "quick reaction" problem).

6. flexibility - what are the types of missions which the

guidance mode can perform, and how well can it adapt to changes

in the mission, such as variations of launch azimuth? (another

aspect of the "quick reaction" problem).

7. _rowth potential - what is potential applicability of the

guidance mode to future missions?

5. Conclusions

It is hoped that the classification method and defintiions of

measures of performance developed here will be of use in the synthesis

of modes (or mode) for a unified guidance system for advanced space

missions. Such a system should encorporate the best features of the various

modes, and improve upon their limitations. Although existing technology has

been adequate for present day missions, some challenging unsolved problems

remain in the area of optimal stochastic guidance, especially for the case

of impulsively applied guidance corrections (see Part 2). Some interesting

results have been obtained (References 24 - 28) but more research is needed.
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Appendix A: Description of Guidance Phases

Present practice in guidance system design is to segment the overall

trajectory into a sequence of thrusting and coast periods which can be

thought of as "phases", where

Definition 7: A guidance phase is a segment of a trajectory, usually

characterized by the means available for applying the guidance accelera-

tions, having a distinct guidance objective, i.e., specified end

conditions.

The guidance mode in each phase attempts to null errors resulting from

the previous phas_plus errors due to any current disturbances, by

attaining the end conditions specified for the phase. Thus a guidance

system might be called upon to solve in real time many different type_

of two-point boundary value problems for a wide range of initial conditions.

Possible types of guidance phases for advanced missions are:

• High Thrust Continuous Guidance

Launch vehicle guidance

a. Initial ascent to altitude

b. Booster stage

c. Ascent to orbit

d. Transfer from parking orbit

Terminal guidance

a. Retro into lunar or planetary orbit

b. Injection into earth satellite orbit

c. Descent from orbit

d. Soft landing and hovering

• Low Thrust Continuous Guidance

Spiral escape from earth

Earth to target transfer

a. Lunar

b. Interplanetary

Spiral capture by target body

Continuous orbit adjustment

a. Earth satellite

b. Lunar satellite

c. Planetary satellite

d. Earth-target transfer orbit
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• Impulsive Guidance

a. Midcourse

b. Approach

c. Terminal

d. Satellite orbit trim

e. Descent from orbit

f. Soft landing retro

• Aerodynamic Guidance

a. Control of lifting reentry

b. Control of ballistic reentry

c. Drag brake control

d. Parachute control

Since there are many types of guidance phases, it is usually the

case that more than one guidance mode will be employed during a mission,

and more than one command mechanization subsystem will be used. Indeed,

the guidance techniques for the various phases are so different that

essentially different guidance systems are used during a mission.

Appendix B: Guidance Phases for a Typical Lunar Mission

Ascent Phase

The ascent phase begins at launch and extends to injection into a

nearearth circular parking orbit, which might have a standard altitude of

I00 n mi above the earth's surface. A typical ascent phase might last

8 to i0 minutes. The objective of the guidance system is to attain circu-

larity (eccentricity equal to zero) at an altitude close to the standard

value. Guidance corrections are applied by steering the vehicle with the

gimbaled rocket nozzle and by making small changes in the thrust termination

time of each rocket stage. The disturbances to the flight path consist of

imperfectly applied thrust acceleration and external forces, such as wind

and air density variations. The position and velocity of the vehicle are

measured by integrating the outputs of accelerometers mounted on an

inertially fixed platform within the vehicle, or from ground-based tracking

radars, or from both these sources.

Parking Orbit Phase

The parking orbit phase begins at parking orbit injection and

extends to the restart of the launch vehicle for the injection phase.

Typical parking orbit durations are i to 20 minutes (4 to 80 ° of coast arc)

but they can he indefinitely long. There are usually no guidance correc-

tions required during this phase, but some vernier adjustment of the errors

remaining from the ascent phase might be made. The disturbances to the

flight path are negligibly small for short coast arcs, but otherwise

atmospheric drag becomes important. The position and velocity of the

vehicle are determined as in the ascent phase, but celestial observations
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can be incorporated if the parking orbit is sufficiently long. A

rendezvous and docking of two or more vehicles may occur in this

phase, the purpose being to assemble a spacecraft capable of completing

the remainder of the mission. The rendezvous does not alter the

essential character of the guidance problem and will not be discussed

here.

In_ection Phase

The injection phase begins at restart of the launch vehicle and

extends to injection into earth-moon transfer orbit (which is an

ellipse relative to the earth with eccentricity of 0.987 for a 66 hour

transfer). The duration of the injection phase is typically 2 to 3

minutes. The objective of the guidance system is to attain a transfer

orbit which will cause the spacecraft to impact the desired target point

on the moon. The corrections are made as in the ascent phase. The

disturbances to the flight path are primarily due to imperfectly applied

thrust acceleration. The position and velocity of the vehicle are

determined as in the ascent phase.

Midcourse Phase

The midcourse phase begins at injection and extends until the

spacecraft enters the "sphere of influence" of the moon, a point which

is not precisely defined but is approximately 60,000 km from the moon.

The duration of a typical midcourse phase is roughly 50 hours. The

spacecraft is separated from the launch vehicle during this period. The

primary objective of the guidance system is to correct for errors in the

injection phase, thus providing a vernier adjustment. There are in

addition some small disturbances to the flight path to consider, such as

solar winds, leaking gas Jets in the attitude control system, and errors

in the assumed values of the physical constants which define the mathe-

matical model used to construct the standard trajectory. The orbit is

determined from celestial sightings and/or earth-based radar data. The

guidance corrections are performed by applying short-duration impulses of

acceleration (on the order of a minute long) with a small rocket engine so

as to achieve "delta functions" of velocity. The magnitude of the correction

is determined by the duration of the thrusting, and the desired direction

is attained by properly pointing the spacecraft. One or more corrections

might be made, the first no sooner than 5 hours after injection so as to

allow time to determine the orbit, and others (usually not more than two)

as required to null errors in the previous correction. The total impulse

applied in the midcourse phase depends primarily on the injection error,

but is typically less than I00 m/sec.

Approach Phase

The approach phase begins when the spacecraft enters the sphere

of influence of the moon and extends until Just prior to beginning of

the terminal phase, a period of typically 15 hours. The objective of

the guidance system, the disturbances to the flight path, and the

techniques for determining the orbit and applying the guidance corrections

are the same as in the midcourse phase. The trajectory is a moon-centered

hyperbola with a hyperbolic excess velocity of typically 1.0 to 1.2 km/sec.

Two or more corrections will probably be made, based on orbit determination
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measurements which sense the position and/or velocity of the spacecraft

relative to the moon. Examples of such observations would be on-board

sightings of the angles between the target center and certain stars and/or

measurement of the change in spacecraft speed as it is acted upon by the

moon's gravitational attraction. It is the gathering of this target-

relative type of orbit information which distinguishes the approach

phase. Since the ultimate mission accuracy very likely will depend on

this information, the approach guidance phase is one of the most important

of all. It supplies the final vernier corrections to the orbit.

Terminal Phase

The terminal phase begins at the completion of the last approach

correction and extends through the final thrusting required to complete

the mission, which might be a retro-braking into satellite orbit, a

direct descent to the lunar surface, or a combination of these two

maneuvers in order to descend to the surface from parking orbit. Integrated

accelerometer data would be used during the thrusting periods, the initial

conditions being obtained from the orbit parameters estimated during the

approach phase. Celestial measurements and/or earth-based tracking data

would be employed, if possible, during the coast periods. Only small

impulsive corrections made would be during the parking orbit, if there is

one. Thus the terminal phase is similar to the ascent-to-injectlon phases,

with appropriately modified guidance objectives.

Appendix C: The Targeting Problem

Although the objectives of the guidance phases are different, it is

obviously necessary that they be compatible and lead to the satisfaction

of ultimate mission objectives. Thus an important aspect of guidance

analysis is the targeting problem, where:

Definition 8: Targeting a given guidance phase is the task of

analytically and/or numerically specifying the objectives of that phase.

Thus targeting is concerned with the practical task of piecing together

the solutions of sequence of two-point boundary value problems so as to

devise an overall solution of the complete problem. The targeting problem

is almost synonomous with the guidance theory problem to analysts primar-

ily concerned with guidance maneuvers which take the form of velocity

impulses, while analysts concerned with continuous thrusting think of

targeting in terms of specifying end conditions. In the terminology of

optimization theory, targeting may be thought of as the task of specifying

the transversality conditions for any guidance phase, given that the

trajectory has been segmented into phases.

The conic formulae are used extensively in targeting, for motion

during a coast period in a drag-free environment can usually be closely

approximated, with perhaps some empirical correction terms, by the

solutions of "patched" two-body problems. Thus for guidance purposes a

closed form solution is valid in these segments of the trajectory, and

the objectives of a given guidance phase can be stated as attaining a

certain combination of orbital elements. A dynamic programming argument

can be used to develop the sequence of desired elements for all phases

by working backward from mission termination. For example, the objective

of a retro thrust maneuver to obtain injection into a terminal satellite

orbit about a planet can be specified in terms of the elements of that
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orbit. The objectives of the approach phase can be specified in terms

of the elements of an approach hyperbola which will be optimal for the

retro phase. The objectives of the midcourse phase can be specified in

terms of the elements of a heliocentric transfer ellipse which will

yield an optimal approach hyperbola. The objectives of the near-earth

inlection phase can be specified in terms of the elements of the earth-

escape hyperbola which will yield an optimal heliocentric transfer

ellipse. Lastly, the objectives of the initial ascent from the launch

pad can be specified in terms of the elements of the near-earth parking

orbit which yields an optimal injection phase.

The notion of a "patched" conic is not a precise one, for the

actual trajectory is continuously attracted by many bodies. The

guidance analyst does not consider the conics to be Joined at fixed

points on the trajectory, however, but instead they are "asympototically

matched" in order to yield a much better approximation of the true

motion. That is, the target planet can be considered massless for the

purpose of injection and midcourse guidance analysis, and the position

and velocity at closest approach to the target can then be used to

determine the asymptote of the approach hyperbola (reference 29). The

magnitude of the position vector at closest approach is the impact

parameter (b), and the velocity vector is the hyperbolic excess velocity

(_). The energy and angular momentum of the approach hyperbola are then
-- 2

given by c = Iv I and c = bl_l .... pectively. The errors introduced3 _ i
by such an approximation are due to the differences in gravitational

acceleration of the target and spacecraft caused by the attraction of

non-target masses acting during the approach phase (such as the sun),

and are usually negligibly small compared to other sources of guidance

system error.

It is usually necessary to predict and/or control the time of

flight to closest approach to the target. Consistent with the notion of

a massless target, one might take the x I coordinate axis in the direction

of the target-spacecraft relative velocity (_) as determined on the

standard trajectory at the standard time of closest approach (tfs). The
predicted first-order change in impact time then becomes

This approach to the problem is well-suited to optimization analysis, for

the minimum time trajectory is obtained by minimizing x at the fixed time

tf. Another more commonly used technique is to employ _he so-cal-T_-ed

llnearized-time-of-flight, which is the time of closest approach to a massy

target corrected for the non-linear effects of the impact parameter, given
by (references 30 and 31)

t L = t(elosest approach) + b-- in e

IvT

where e is the eccentricity of the approach hyperbola. It can be demon-

strated analytically and numerically that t L behaves almost as a linear

function of the midcourse correction components.
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Appendix D: A Simple Stochastic Control Problem

The discussion of guidance modes presented here deals with the

deterministic guidance problem, assuming that random navigation and

systematic errors can be treated separately. As indicated in Part 2,

this is a reasonable assumption for many applications, but does not

hold for problems where the random errors are large, or where the

guidance corrections are applied on the form of impulses at times which

are not a priori specified. In these situations the deterministic

approach is not appropriate, and a stochastic guidance law should be

devised.

The stochastic control problem can be illustrated by a simple

that at the initial time to the final state xl(t f) isexample. Suppose
known to be of the form

xl(t f) - g (u, _)

where u is some scalar control parameter, and _ is some scalar parameter

characterizing the motion between t and t . For example, _ might be
the initial condition x_(t ), or th ° magnitude of a perturbing accelera-

tion acting between t land°t . Suppose the navigation system has provided
o f ,

an estimate of _, denoted by a , but there is an error in this estimate,

denoted by E-(e*-a). Suppose this unknown error is a zero mean, Gausslan

random variable with variance a 2 over the ensemble of all similar

experiments. The problem is to choose the u which in some sense minimizes

x I. If the estimates were perfect (E-o), one would seek a u ° such that

_u (u°, _*) = 0

In the stochastic case, however, the error in the estimate can be

arbitrarily large, so one must deal with the statistical expectation

(E [.]) of the derivative. This might be expressed in the form of a

Taylor series as

I _L _I 3 1 I 4

+ higher order terms in E n ]

4

+ [higher order terms in a 2]

where the coefficients of the Taylor series are evaluated as functions

of u ° and _*, and properties of a Gaussian distribution have been used

in computing the expectation (i.e., the expected value of the odd moments
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are zero, and the expected value of the even moments are expressible in

terms of o2). Thus it can be seen that the statistics of the errors in

the estimate become inseparably mixed into the optimization problem, and

it could be diffieult to find u °. The Taylor series method might not be

the best approach, expecially for states of higher dimension. In any

case, one Is conePptu_11y faced w_th so!ving an infinite number ef

optimization problems corresponding to every possible _alue of e, and

choosing a weighted (according to the probability of occurrence of the

values of _) average of the solutions.

A still more subtle problem arises if it is desired to choose

two guidance parameters (Ul, u 2) to minimize

subject to

xl(tf) = gl(Ul, u 2, a)

x2(t f) = g2(ul, u2, _) = given value

Analogous to the deterministic case and the previous example, one is

tempted to minimize

E [gl(Ul, u2, _) + _ g2 (Ul' u2' n)]

where _ is a Lagrange multiplier. Conceptually this corresponds to

solving an infinite number of optimization problems where the end

condition is satisfied each time, and the Lagrange multiplier has to

be treated as a random variable. There is no reason to expect that su¢

solutions exis4 however. Alternatively, one seeks to minimize

E [gl(Ul, u2, _)] + _ E[gl(Ul, u2, _)]

where _ is a fixed constant. In this case the end conditions are

satisfied "on the average", that is, the expected value of the end

conditions satisfy the constraint but individual members of the

ensemble generally do not.

It appears that stochastic control considerations analogous to

those discussed in this simple example will arise in the case of

impulsively applied guidance corrections. Some qualitative and approxi-

mate solutions of such problems have been obtained (references 24 - 28),

but more work in this area is clearly indicated.
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ABSTRACT

An approximate analytic solution is developed for minimum fuel guidance

from an arbitrary point on a hyperbolic orbit into a specified circular orbit. The

hyperbola must lie close to the plane of the circular orbit and its periapsis radius

must be close to the radius of the circular orbit. Optimization of the midcourse

impulse, the finite-thrust terminal burn, and of both maneuvers in combination

is considered. The particular problem treated is intended as a simple example

of a new, unified guidance technique.
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NOMENCLATURE

Exhaust velocity

Eccentricity of nominal approach hyperbola

True anomaly

Thrust

Mass

First moment of acceleration during final burn

Second moment of acceleration during final burn

Radius

Time

Corrective velocity change

Relative velocity at nominal target interception

Circumferential component of position at nominal target

Radial component of position at nominal target

Out-of-plane component of position at nominal target

Thrust angle with local horizontal

Thrust angle out of orbit plane

Gravitational constant of planet

Rate of change of

Rate of changc of

Subscripts

Critical

Component of critical plane correction in orbit plane

Component of critical plane correction out of orbit plane

Noncritical

Periapsis

Beginning of terminal burn

Centroid of terminal burn

End of terminal burn
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IN TRODU C TION

In recent years, there has been increasing interest in the use of optimi-

zation theory for the guidance of space vehicles. Much of this work has been

deterministic and is based upon the idea of flying a minimum fuel trajectory

from the vehicle's current state to the desired final state. The early work in

this field either linearized both the state and the control around the nominal

trajectory (second variation guidance, Refs. 1, 2) or else numerically fit the

control to a pencil of optimal trajectories which achieved the desired final

state (path adaptive guidance, Ref. 3). A more recent trend has been to use

analytical solutions to optimal trajectories for various approximations to the

full equations of motion (Refs. 4-6). The latter technique is now widely used

for booster guidance but space-craft guidance is still largely based upon va-

rious ad hoc approximations (Refs. 7, 8). What is needed is a unified theory

for the optimal guidance of space vehicles which can handle various missions

and phases of flight. Such a theory might be developed by the onb0ard genera-

tion of nominal trajectories with the use of neighboring extrcmals for some

segments of the trajectory and analytical solutions of approximations to the full

problem for the other segments of the trajectory. While the concept of a neighboring

extremal may be used (as in second variation guidance}, it will not be permissible

to linearize the control (as is done in second variation guidance) because many of

the portions of the trajectory have no control.

The present study represents a first step in the development of a unified

theory of optimal guidance of space vehicles. The theory is for minimum fuel

deterministic guidance of high thrust vehicles such as an advanced kick stage.

It treats both midcourse and terminal guidance in a unified fashion for variable-

time-of-arrival missions. The primary application would be to orbiter missions

and to rendezvous missions.
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The theory is developed by considering a particular example which is

simple enough to allow explicit development of the equations but still reflects

many of the difficulties to be encountered in more complicated examples. The

particular example treated is guidance in a central gravitational field from a

hyperbolic approach condition into a desired given terminal circular orbit. The

time for this operation is open and the initial perturbations from the nominal

approach hyperbola are taken to be small. The nominal approach hyperbola is

tangent to, and in the plane of the circular orbit. However, the perturbations

around this nominal trajectory may occur in three dimensions.

The analysis is divided into three parts. First, a general solution is

given for an optimal midcourse correction of a trajectory which has a finite

terminal impulsive maneuver. The special case of the problem considered in

this paper is treated in this section. The second part of the paper is concerned

with the motion during a finite thrust terminal burn. On the basis of this analysis,

due largely to Robbins (Ref. 9), a guidance logic is proposed for guidance during

the terminal phase. In the third part of the paper, the terminal maneuver and

midcourse maneuver are considered together so that an overall optimization of

the combined corrections may be carried out.
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ANALYSIS

I - Optimum Midcourse Correction

Most existing theories of optimal midcourse guidance are for cases where

all of the corrections are infinitesimal corrections in the neighborhood of an un-

powered freefall trajectory (e. g. Refs. 10-13). It is necessary to extend this

theory to the case where the nominal trajectory may contain powered arcs of

finite magnitude. This section will consider the simplest case of such a problem.

For this case, the nominal trajectory has a single finite impulse at its end and

represents an optimum variable-time-of-arrival rendezvous or orbit transfer.

At some time, it is discovered that the actual trajectory has departed by a small

amount from the nominal trajectory and a correction must be made in order to

insure that the original objectives of the mission will be met. In many cases,

only a single midcourse correction will be necessary. This will be true for

the particular example treated in this paper and is the only case that will be

considered herein. The three components of the midcourse velocity correction

will produce changes in three components of the terminal position and in three

components of the terminal velocity. A special co-ordinate system has been

used for the analysis of variable-time-of-arrival position guidance which is

also useful in the more general problem under consideration. This co-ordinate

system makes use of a direction known as a non-critical direction (Refs. 10-11).

A small velocity impulse in a non-critical direction will produce changes in the

terminal position which are parallel to the relative velocity between the vehicle

and its target at the nominal arrival time. In the case of an orbiter mission, this

relative velocity vector may be taken as the direction of the terminal impulse.

At right angles to the non-critical direction is the critical plane in which the

position deviations which are orthogonal to the terminal impulse are corrected.

The total velocity correction in addition to the nominal characteristic velo-

city of the nominal trajectory is given by Eq. 1.
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_//u2+u 2 ' aVR aVR_6V
e nc _u Une - _ Uc (1)

nc c

This is a first order expression and considers both the velocity change in the

mideourse impulse and the corresponding changes in the terminal impulse.

The first term is simply the Euclidean norm of the velocity changes in the

critical and non-critical directions. The magnitude of the velocity change in

the critical plane will be determined by the requirement that the position devia-

tion normal to the direction of the terminal impulse must be reduced to zero.

The component of velocity in the non-critical direction will be used to reduce

the relative velocity and the magnitude of the terminal velocity impulse. The

second term represents the change in the magnitude of the terminal impulse

due to a small impulse in the non-eritinal direction, while the third term re-

presents the reduction in magnitude of the terminal impulse due to a small

impulse in the critical direction. As we are only considering first order terms,

only the changes in velocity parallel to the finite terminal impulse need be

considered. The optimum magnitude of the component of the midcourse impulse

in the non-critical direction may be found by differentiating Eq. 1 with respect

to this velocity component and setting the derivative equal to zero. Eq. 1 always

possesses a single minimum if the nominal trajectory is optimal. The optimum

magnitude of the component of velocity in the non-critical direction is given by

Eq. 2, while the corresponding minimum cost due to the trajectory correction

is given by Eq. 3.

bV R

, _Unc lucl
u

ne /

r v l,
1- L J (2>

/[] bV R 2 _VR

1- l uel- u e (3)
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Eqs. 1 through 3 represent the general linear solution for the optimum

magnitude and direction of a single midcourse impulse at a specified location

when there will be a large terminal impulse and when the transfer time is

open. For the deterministic case considered herein, such an impulse at the

earliest possible time will normally provide an optimum correction. For example,

this is always true for the transfer from a hyperbola to a nearly coplanar circle

considered herein. For any particular case, the optimality of a single correc-

tion may be checked by calculating the primer vector (Refs. 14, 15) along the

unpowered trajectory. If the primer vector exceeds the magnitude of unity

at any point other than the initial and terminal points, an additional impulse

will be required for an optimum trajectory. Ref. 15 suggests a method for

calculating this multiple impulse correction,

It should be noted that this optimum midcourse correction depends only

upon the position deviations normal to the direction of the final impulse. It

does not depend upon any of the velocity deviations at the terminal point on the

trajectory. The velocity deviations normal to the terminal impulse do not affect

the fuel consumption to first order and are neglected, while the deviation parallel

to the final impulse is corrected by the final impulse and does contribute linearly

to the total characteristic velocity.

For the particular example treated herein, the nominal trajectory is a

hyperbola which is coplanar with, and tangent to, the terminal circular orbit.

The deviations from the nominal position and velocity of the periapsis will be

analyzed in a Cartesian inertial coordinate system whose x-axis is aligned with

the direction of the circumferential final impulse. The y-axis will be radial and

the z-axis will point out of the orbit plane. The rates of change of the signifi-

cant components of the periapsis position and velocity with respect to the magni-

tude of a midcourse impulse are given by Eqs. 4 through 6.
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dyp = _ [ (1-cosf) 2+e+ecosf
du 1 + e cos f

dz /__3(e+l)..= sin f sine
du v /_ l+ecosf

cos _ - sinfsin a I cos

(4)

(5)

---_ =[(l+ecosf)cosa+esinfsin_]du cOS_e+l (6)

The noncritical direction is in the plane of the circular orbit and is given by Eq. 7.

2+e+ecosf
tan _nc = 1 + e cos f (7)

This is the direction of thrust which will produce no change in the periapsis radius

to first order. It is now convenient to reference angles in Eq. 6 to the non-critical

direction to yield Eq. 8.

dk _ (e+l)cos(__anc)_2_/T_ l+ecosf sin(a_anc)
= e + 1 cos _]

du _(e + 1)2( 1_ cos f) +2 ( l+e cos f)(2 +e_ cos f) ,

(8)

From Eq. 8, the partial of the terminal impulse with respect to a midcourse im-

pulse in the non-critical direction can be found as Eq. 9.

5v R _k _ (c+1)

_u 5u
nc nc

_/(e+l)2( 1-cos f) +2( l+ecosf)(2 +e-cosf)

(9)
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Eq. 9 varies monotonically with distance from the periapsis, between the two limits

given by Eq. 10.

bV R_ _"_ < 1
nc

(10)

The left-hand limit is the value at an infinite distance while the right-hand limit

is the value at periapsis. The magnitude of this quantity is always less than unity,

as it must be ff the single correction is to be optimum. By using Eqs. 2, 4, and

5, the three components of the optimal midcourse correction may be found as

Eqs. 11, 12, and 13.

= / _(e+l)Ucy - YP R 3
P ( 1 - cosf)

l+ecosf

4( e + 1)2( 1- cos f) +2( 1 +e cos f)(2 +e- cos f) '

(11)

u = -z / _' l+cosfcz R3(e+l) sinf
P (12)

Unc =

2 2'
(e+l) Ucy +Ucz

_/2(l+ecosf)(2+e-cosf)-2(e+l)2cosf '

Finally, the total additional cost of the midcourse impulse and the change in the

magnitude of the terminal impulse due to position deviations in the periapsis is

given by Eq. 14.

(13)
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i
_SV = 2(l+ec°sf)(2+e-c°sf)-2(e+l}2c°sf _u 2+u 2

2 ( 1 +e cosf)(2 +e_ cos f) +(e + 1)2( 1_ cosf) cy cz

2_f_:c'o'_ l+ecosf u
e+l cy

42( l+e cosf)(2 +e- cos f) +( e + 1)2( 1- cos f)

(14)

Itis interestingto compare the fuelconsumption due to thisoptimum

correction strategy with the fuel consumption of a technique which has been

used previously, namely the minimization of the magnitude of only the midcourse

impulse. Figure i illustratesthe totalmagnitude of velocity corrections due

to a midcourse correction impulse at the illustratedlocationsand in the illus-

trated directions. The magnitude of each arrow represents the totalcorrective

velocity (Eq. 14) necessary to correct a unit displacement in periapsis altitude.

The arrows above the hyperbola are the corrections necessary to raise the

periapsis while those below the hyperbola are those necessary to depress the

periapsis. At each point there are two arrows which are diametrically opposite.

These arrows are in the criticaldirectionwhich minimizes the magnitude of

only the midcourse impulse. The arrows are not of the same length because

the change in the magnitude of the terminal impulse due to raising or to lowering

periapsis is of opposite sign. The two shorter arrows at each point represent

the optimum corrections. The directions of these arrows are symmetric with

respect tothe non-critical directionwhich is orthogonal to the criticaldirection.

The figure shows that the optimum correction strategy always saves fuel rela-

tive to the other strategy and that the relative fuel saving becomes quite iarge

as the vehicle gets closer and closer to periapsis.
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II - Terminal Maneuver

The finite thrust terminal maneuver for injection into the circular orbit

cannot be approximated as an impulse because of its relatively long duration.

The guidance for this terminal maneuver is developed by utilizing an approxi-

mate solution of the equations of motion. This approximate solution is a direct

application of a theory due to Robbins (Ref. 9). It represents a second order

expansion of the impulsive solution for the optimal trajectory in terms of in-

verse powers of the average acceleration. Robbins' theory can theoretically

treat any thrust acceleration schedule because it is based upon the moments

of the acceleration about a centroid time. For the practically important case

of constant thrust, the moments about the centroid of the finite thrust burn

are given by Eqs. 16-19, while the characteristic velocity of the maneuver

is given by the standard rocket equation, 15.

t2 m 0

AV =_ f F dt =c&n --
m

t O m2 (15)

MI---

t2 F

f _ (t-tl) dt =0

t
0

(16)

[ 1emo e (1_:--_-)
tl-t0 = "-7" 1- _--

(17)

I AV AV ]
= CmO -- _c (l_ee) e

t2 -tl T "_ - e
(18)
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t2

M2 =_ j Fm (t-t1)2dt

t o

(t2-t0)2 AV I 1 AV)2+ 1 AV 412 (7, +...

Robbins' analysis is carried out in an inertial Cartesian coordinate system

whose origin is at the location of the nominal impulsive burn and whose x-axis

is aligned with the direction of the impulse. For the present problem, the

impulse is circumferential and that will be the direction of the x-axis. The y-

axis will be taken to be radial and the z-axis will be taken to be normal to the

first two axes. The analysis in this rectangular co-ordinate system is then

developed by ignoring all powers of the inverse of the average acceleration

higher than the second. Robbins shows that, for the time open case, this

assumption implies that small angle formulas may be used, that the optimal

thrust direction is a linear function of time, but that the gravity gradient in

the nominal direction of the impulse must be considered in the analysis. With

these assumptions, the equations of motion are given by Eqs. 20-22.

(19)

m

t 1 _ 0

(_l+a_t)2+(_l+_t)22 ]

(20)

_;+___ F

R 2 _- m (a1+aJt)
(21)
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n_

(22)

The terminal boundary conditions are such that the vehicle will end up

on a circular orbit at the desired nominal radius. In this Cartesian co-ordinate

system and with these approximate equations of motion, these boundary conditions

are given by Eqs. 23-27.

(23)

Y2 = - _ t2 (24)

2

t2
J2 2 2

R
(25)

_2 = O
(26)

z2 = O
(27)

The integrationof the equations of motion may be carried out by standard

techniques to yieldEqs. 28-32.
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1_ I-Xo_- _vE2______2
£2 =x0 [1 _- R 3 (t2-to)2 R 3 R 3 t2

- (t2-t0) - -2- - 1

E ]M2 .__ + oj2 +_ 2

+ -_- R3
(28)

Y2 = Y0- "_" -AV0_I
R 2 (t2-t0) (29)

1

Y2 = Y0 + Y0 ( t2 -to) - 2 _ ( t2 -t0)2 - AV0_lt2 + M2°_
(30)

_2 = _0 - AVf]l
(31)

z 2 = z0+_0(t2-t o)-AV_lt 2 +M2_ (32)

There are five quantities that must be determined in order to meet the

five desired terminal conditions. These quantities are the directions of the thrust

at the centroid time as well as the rates of rotation during the burn and the total

duration of the burn. To this order of approximation, these quantities are given

explicitly by Eqs. 33-37.

Y0 + R_-2 to

O_I = AV

0¢=-

2

to

Y0-Y0t0-R 2 2

M 2

(33)

(34)
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(35)

_'] = _ --

z 0 - _0to

M 2 (36)

[ I

AV: (x0-_ )L 1+ _ ] + _-x0 /_R3 (2t2t0 - t:)

l0j2 + _2

-x o _-R3 (t2-t0)+--_ R 3 +
(37)

This completes the development of the equations of motion during the

terminal burn as well as the solution of the boundary value problem for control

of the vehicle. It is still necessary to make a feedback control law out of these

equations and to determine the times at which the thrust should be turned on and

turned off. An accurate way to create a feedback control law is to continually

redefine the position of the centroid on the basis of the estimated time-to-go

to the completion of the burn. This will cause the Cartesian co-ordinate system

to rotate and change its origin during the burn but will cause the solution to

become progressively more accurate as the terminal time is approached. With

this type of feedback control, the engine may be turned off whenever some mea-

sure of the terminal error becomes small enough.

The optimum time to turn the engine on may be determined by noting that

Robbins' theory predicts that the centroid of the final burn should be at the peri-

apsis of the hyperbola. The required length of the burn may then be determined

by substituting the control Eqs. 33-36 into Eq. 37 and referring all quantities to
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the perigee of the unpowered hyperbola, yielding Eq. 38. The last term in

Eq. 38 is of higher order than the other terms and may generally be neglected.

2 2 2

_ M2__+ + z
p R R 3 2 2M 2 2Av (38)

III - Optimization of the Combined Maneuver

The first section of the analysis considered the optimum midcourse cor-

rection if there was going to be an impulsive terminal burn. The second section

then developed the equations of motion and the cost for a finite thrust terminal

burn. This final section is intended to determine the minimum fuel consumption

for the combined maneuver with a midcourse impulse and a finite thrust terminal

burn. With a finite thrust terminal burn, it is possible to produce changes nor-

mal to the nominal thrust direction during the burn, so that part of the position

correction may be done during the terminal burn and part may be done during

the midcourse burn. The total additional cost, over and above the AV of the

nominal impulsive hyperbola, is given by Eq. 39.

_5V = bUne 'li ji.,'2LYpi-YpJ 2 + Lz_i-'pJ

" 2 2

I. cy t. ey j

2+z}) b_¢ M 25/( / _u (YP _ _.kL __

ey (Ypi_Yp) + 2M 2 Yp+ R 3 25yp /bUcy + 5yp (39)
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The only unknowns in Eq. 39 are yp and Zp which are the position displace-

ments at perigee after the midcourse impulse. All the other terms in Eq. 39

may be considered as constants and they have all been previously determined

in this paper except for the one given by Eq. 40.

b_
._2. =_ /_

_Yp R 2
P (40)

The optimum values of yp and Zp may then be determined by differentiating Eq. 39

with respect to these two quantities, and setting these derivatives equal to zero.

This produces two simultaneous quadratic equations for yp and Zp. These si-

multaneous equations may be solved by standard algebraic techniques, either

analytically or by iteration. Once yp and Zp have been determined, the components

of the midcourse correction may be determined from the formulas in Section 1

by substituting the changes in these quantities for the total corrections considered

in Section 1. The terminal maneuver is then carried out according to the sugges-

tions developed in Section 2. Eq. 39 may also be used to determine the relative

cost of having a midcourse correction or of correcting all the position components

during the terminal burn. These comparative costs may then be used to deter-

mine the desirability of performing a midcourse correction.
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CONCLUSIONS

i. The optimum midcourse guidance correction for rendezvous or orbit trans-

fer may be found by a simple modification of the standard calculations for

position guidance.

2. An accurate near-optimal terminal guidance scheme can be developed ex-

plicitly using Robbins' theory of near-impulsive transfers.

3. A unified theory of minimum-fuel guidance can be developed for a large

class of missions.

POSSIBLE EXTENSIONS OF THE ANALYSIS

This problem can be extended to nonlinear planar corrections by using

the results of Hornet (Ref. 16). The adjoint solutions corresponding to

small planar corrections are identical with Horner's.

2. It should be possible to generalize the analysis to arbitrary time-open

maneuvers in the neighborhood of a given time-open minimum-impulse

maneuver.
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RESTRICTED MINIMA OF FUNCTIONS OF CONTROLS

1. INTRODUCTION

In a previous paper [ 1] we have discussed the existence of controls p that

minimize a function x ° subject to the restrictions that, for every value of its

argument t in a metric space, p(t) is contained in some preassigned set R"(t) and

that x(p)¢B1, where x is a given mapping and B 1 is a closed subset of a topological

space H. We have shown that, in a large class of problems, such minimizing controls

exist in a larger space of "relaxed controls" and that these relaxed controls can be

approximated by original controls.

In this paper we shall assume that H is the euclidean n-space E . We wish
n

to investigate certain necessary conditions for minimum that might be considered a

generalization of the Weierstrass E-condition and of the transversality conditions of

the calculus of variations. In this sense our results represent an extension of

certain methods and theorems of the mathematical control theory, and specifically

of references [ 2] and [3 ], to a more general setting. The necessary conditions that

we obtain are no longer restricted, however, to minima over the space _ of

relaxed controls but apply as well to minima over the space_ of original controls

(if such minima exist). Thus our present results also generalize Pontryagin' s

maximum principle. Furthermore, the space_ is no longer restricted, as in [I],

to measurable mappings from one metric compact set to another.

Previous attempts to apply the methods of the mathematical control theory to

problems involving functions defined otherwise than by a system of differential or

difference equations were mostly limited to special, and linear, problems. Recent

results of Neustadt [4, 5] are, however, quite general. They are based on a

separation theorem for convex sets that represent certain linearizations of

constraints. Our approach is, however, different from Neustadt' s; in particular,

our basic results are stated directly in the form of inequalitites involving the value

of the minimizing control at an arbitrary point rather than in the form of functional

inequalities.
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Let T and R be arbitrary sets, B a convex set, _ a class of controls,

that is, mappings from T to R, x = (x 1 ..... x n) a given function frcm_x B to

and B 1 a given set in E . We wish to characterize a control_and a pointE n,
n 1

"b e B that yield a minimum of x (p,b) subject to the condition x_,b) eB 1 . The

necessary conditions for minimum that we derive are expressed in terms of certain

variational derivatives Dx(p, b; t*, p*) respectively Dx(p, b', t*, r) defined in

section 2. These derivatives represent, roughly speaking, the rate of change of x

when its argument p is replaced by the function p* (respectively the constant

function r) over a "small" set in the "neighborhood" of t*.

As an illustration, we consider, in sections 3 and 5, the "standard" problem

of the mathematical control theory of ordinary differential equations and prove a

slight generalization of the usual necessary conditions.

2. NECESSARY CONDITIONS FOR MINIMUM

Let T and R be arbitrary sets, B a convex set, _ an arbitrary class of

- (x 1 'mappings from T to 1R, and B 1 a set in E n. The vector functionx = ...,x n)

is a given mapping from_x B to E . If p :T _R, we denote by p(t) the image,
n

under the mapping p, of a point t in T. If the mapping p depends on some parameters

a, b, c, we designate by p(a, b, c), or by p(. ;a, b, c) the mapping, and by p(t; a, b, c) the

image of t under the mapping. Similarly x denotes a mapping and x(p) the image of p

under the mapping x. We also write, when it appears more appropriate, t _p(t) to

represent a mapping.

IfPl and P2 are two mappings fromT toR, andAis a subset of T, we

designate by [Pl' A;P2] the mapping p defined by the relations

p(t)= Pl(t) on A, p(t)= P2(t) on T-A.
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Similarly, if Pl'P2 ..... Pk' p are mappings from T to R, and A1, A 2 ..... A k are

disjoint subsets of T, we designate by [Pl,Ai(i= 1 ..... k); p] the mapping p defined

by the relations

p(t) = Pi(t) on Ai(i=l ..... k), p(t) = p(t) elsewhere on T.

Let T* be a subset of T, and let .4_ be a collection of subsets M(t, _) of

T(t cT*, _ >/0). Let pe_, p* ¢,_ , b •B, t* •T, c_ >0, and let

p' = [p*,M(t*,_); p].

If p' •,_ for sufficiently small c¢ and if

lira 1 (x(p' ,b') - x(p,_))
0/

0_+ 0

exists, we shall say that "x has an ,4f'_'-derivative at (p,b) with respect to (t*,p*)"

and we shall designate this limit by D_ x(p,b;t*,p*). If_ *(t*) is a subset of

for each t* • T* and Dsct x(p,b;t*,p* ) is the same for all p* e_(t*) such that p*(t*) = r,

we shall write

D_ ,_. x(p, b;t*, r) or Dx(p, b;t*,r)

(fie and the mapping t* _,_ *(t*) are fixed).

Let nowp •_:_, b-•B, andb •B. We shall write Dx(p--,b;b) for

lira_ (x¢_,(z-0)_+eb)-x(_,_)).
0_+ 0

Definition 2.1. Local variations in _ x B.

2

Let p • _, b • B, T* C T, let _/" k be, for k=l, 2 ..... n , a collection of

subsets Nk(t,_)of T(t •T*, _ >_ 0), and letJ_'% I.,_'k Ik=l ..... n21. Let_* be

a mapping from T* to the class of subsets of _ .
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We shall say that (T*, _ *, ._) define "local variations for x in _ x B at

(p, b)" if the following conditions hold:

2

(2.1.1) For t* t* t* _T*, k, kl,k2=l,2 ..... n andre/3 >/0,'1'2

Nk(t*,a ) C Nk(t*,fl ) if _ _< fl; Nk(t*,0 )

is the empty set; Nkl(t*, _) and Nk2(t*,/3) are disjoint if kl_k2; and Nkl(t_,¢_) and

Sk2(t_, fl) are disjoint if t_ _t_ and both a and fl are sufficiently small.

(2.1.2) Let an array with elements fill(i, j= 1 ..... n) be represented by fla.

Let, for every choice of t _ with elements t ij e T* and of pO with elements

pij e;_.(tiJ), the set _ = _(t?) in. E _ contain all arrays wo with coij _> 0 which are

such that the sets Nnj_n+i(tlJ, coiJ) _i_]=l,... ,n) are disjoint, and let

p, =p, (t o, pa, ¢oo) = [pD Nnj_n+i(t lj,wij)(i, j= 1 ..... n); p] for 0P c _t°). Finally let

b ° have elements b D <B, 0a have elements

n n

i,j=l i,j=l

and
n

8 ° .b °= 8°b + _ 8iJbiJ .

i,j =I

Then

(2.1.2.1) p' _;

(2.1.2.2) for fixed t u, pU and b a, the function

(wD,e ° ) _ _(w °, e a ) = _(oP, _,t°,p=,b a ) = x(p' (ta,p a, wa), Oa.b a) from _ x _'Jto

E is continuous in some neighborhood of (0 a, 0a), and has a differential at (0 a, 0=)
n

(relative to _ x _;
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2
(2.1.2.3) for every t* ¢T*, p* c_*(t*), andk=l,2 ..... n ,

D_kX (p,b;t*,p*) = D x (p,b;t*,r) exists, is independent of k, and has the same

value for all p* e_*(t*) such that p*(t*) = r.

We can now state our general necessary conditions for minimum which we

shall prove in section 4.

Theorem 2.2. Let (p,-b) yield the minimum of xl(p, b) in_x B subject to the

condition x(p,b) ¢ B 1. Let (T*,._*, ._ define local variations for x in_x B at

(p_b-), and let, for all t* _ T*, R*(t*) = Ip*(t*)Ip*c_(t*)}. Let, furthermore, B_

be a convex set in Em, b _ a point in S_, and (_: B_ _B 1 a continuous mapping such

that _(b-_) = x(p_b), q_jB_) C B 1 and _ has a differential at b'_ (relative to B_)

ddp(b--_;b_ -b'_) = dpb_(b_)(b _ - b_)(where _b_(_-_)is a linear operator from Em to En )"

Then either

(2.2.1) _ _ _ _¢ ( ) = Min gb (b_)b_,

or there exists a nonvanishing vector 7, in E such that
n

(2.2.2)

(2.2.3)

- Dx(p,b;t*,r) >/ 0 for all t* <T* and r ER*(t*);

• Dx(p,b;b) >/ 0 for all b CB;

and

• - - : _ _o___)[_b_(b-_)h_](22_) _o__)[_b_(h_)h_] h_
for some o >_ 0, where _1 = (1,0 ..... 0) EEn.
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Remark. Relation (2.2.2) generalizes the Weierstrass E-condition, relation (2.2.3}

generalizes the transversality conditions at the initial point and describes the

dependence on parameters, and relation (2.2.4) generalizes the transversality

conditions at the endpoint.

Theorem 2.2 is of particular interest in the case [ 1] when t _R#{t) C R is

a given mapping from T to the class of nonempty subsets of R, and 2_ 9 is the class of

measurable relaxed controls a such that the probability measure a(t) is supported on

the closure of R#(t) for all t e T. We may then assert [1, Th. 2.6] that in a large

class of problems there exists a relaxed control _ and a point b that yield the restricted

minimum assumed in Theorem 2.2; and we may verify a priori the other assumptions

of Theorem 2.2. We are then able to state that a minimizing control _ and point

exist and either satisfy condition (2.2.1) or conditions (2.2.2), (2.2.3), and (2.2.4).

Since these relations often admit only a finite number of solutions, we can determine

a minimizing a and b-; in this sense, [ 1, Th. 2.6] and Theorem 2.2 often provide

constructive conditions for minimum.

3. FUNCTIONS OF CONTROI_S DEFINED BY ORDINARY

DIFFERENTIA IJ EQUATIONS

We shall now illustrate the use of Theorem 2.2 in certain standard problems

of the control theory, postponing the proof of the results presented in this section to

section 5. Let T be the closed interval [ to, tl] of the real axis, R a separable

metric space, R # a mapping from T to the class of nonempty subsets of

R, Bo C En, B 1 C En, andg:E nxTxR_En. In this section, and in section 5, the

words measure and measurable will be used in the sense of Lebesgue and IA f will

represent the measure of A C T.

Let_' be a class of mappings p:T _R such that t _g(v, t,p(t)) is measurable

on T for every v e En and pc_ ;_ and [ Pi,Ai(i=l, .... k);p] ¢._' if k is a positive integer,

each A i is a denumerable union of intervals, and p_,_', pi _ _' (i = 1 ..... k). We shall

henceforth refer to elements of _)' as "measurable" mappings (as distinguished from

measurable mappings). We set ,_ = _p _' Ip(t)c R#(t) on T}.
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For p _2_ and b ° _ B o, we consider an absolutely continuous function

y= y( • ;p, bo) onT such that

(3.!. 1) dy(t)/dt = y(t) = g(y(t), t_p(t)) a e. in T

and

(3.1.2) Y(to) = b o.

We wish to investigate certain properties of a point bo _ Bo and a mapping

_" that minimize yl(tl;O, bo) on £ x B ° subject to the restriction that

Y(tl;P, bo) e B 1.

We shall say that a sequence {Ml}i_ i"= of closed subsets of T is "regular at t"

if [Mj[ _0 as j _ _, "t _ M., and diameter (Mj)< clM. I for some positive e and
J ]

all j= 1, 2 ..... We shall say that a "measurable" mapping p*:T _ R is "admissible

- 1

p*(t) e R#(t) on T and lira ,Ivi.l_ _M. g(v,t,p*(t)) dt= g(v,t,p*(t)) for all
at t" if

j_
J J

v ¢ En and all sequences {Mj} that are regular at'_.

We set

R*(t-) : { p* J p* is admissible at t'}

and

We shall also write R*(t), Mj, etc. to represent closures of the sets R*_), Mj,

etc.

Assumption 3.2. For every v c E n, r_R, and t_T, the function g(v, t,. ) is continuous

on R, g(v, • ,r) is measurable on T, and g(., t, r) is continuous and has continuous

first order derivatives on En. Furthermore, for every v in E there exists ann

integrable function Cv on T such that Ig(v, t, r) I _< Cv(t) on T x R. Finally, for every
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bounded subset D of E there exists an integrable function _CD on T such tha,
n

"- ' gv is the matrix

j=l
• . n . .

(Ogt/_)vl), and Igvl = i,_= 1 I_)gl/0v J I.

Remark. Assumption 3.2 implies that we may choose as ..4_, the class of all the

measurable functions from T to R.

Theorem 3.3. Let (P, bo) minimize yl(t "p b ) among all points b in B and all
.... 1' ' O O O

"measurable" mappings O such that 0(t) • R_(t) on T and Y(tl;P, bo) e B 1, and let

Assumption ,3.2 be satisfied. Let y = 3'(" ;P, bo), b 1 = Y(t 1) and let, for k, 0, 1, B_

1 n

be a convex set in Emk and q5k = (_k ..... _k ) : Emk_ E n a continuously differentiable

mapping sueh that _k(B_.) ,_-.B k and _k(b_) = bk for some. b[. • B[. Let A k be, for

k= 0, 1, the matrix (_)_k/_)b_J)- evaluated at b_, and let Alk be the i-th row of this

matrix. Then either

(3.3.1) All " -b_ = Min All " b_ ,

b7 B_

or there exists at] absolutely continuous function z:T _ I.: such that
n

(3.3.2) y(t) = g(ylt),t,p(t)) a.e. in T,

T-

(3.3.3) z(t) = - gv(Y(t),t,p(t))z(t ) a.e. in T

T

(where gv is the transpose of the matrix gv) ,

(3. LL 4) [z(t) I # 0 on T,

(3.3.5) z(t) • g(_(t), t,p(t)) = Min z(t) • g(y(t), t, r)

r¢_#(t)

(3.3.6) Z(to) • Aob* = Min Z(to) • Aob* ,
b* • B*

O O

a.e. in T,
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and

(3.3.7) (TSl-Z(tl)) • Alb _ = Min (y61- (_1)) • Alb _

for some _ >_ 0. Hence 51 >1 (1,0 ..... 0) eEn.

In particular, if R#(t) = R on T and ._ ' contains the constant mapping t _r

for all r in a dense denumerable subset H of R, then R*(t) can be replaced by R in

statement (3.3.5).

By combining [1, Th. 3.1] and Theorem 3.3, we can prove the existence of a

minimizing relaxed control a and a point b and can state some of their characteristic
o

properties. We require

Assumption 3.4.

(3.4. i) R is compact.

(3.4.2) B ° is compact and B 1 is closed.

(3.4.3) There exists an integrable function ¢ on T such that

Fgv(V,t,r) [ _< _(t) on E n x T x R.

(3.4.4) Let._ #= { p:T_H Ip(t) e R#(t) on T and p is measurable}. Then for

every c there exists a closed subset T e of T, of measure at least IT I - c, with the

property that (a) for everyT _ T and every re R#_) there exists a mapping pc R #,
E

continuous at t- when restricted to T , and such that the distance from p(t-) to r is at

most ¢; and (b) for every't • T and every h > 0 there exists a positive 5 = 6 (h,'t) such

that R#(t) and P#(_ are in the h-neighborhood of each other if tcT and It - t-[ _< 5.
£

Now let S be the class of regular Borel probability measures on R. It is well

known [9, p.426] that a metric can be defined on S such that S is separable and the

convergence in S is the weak convergence of measures: that is, a sequence sl, s2,...

converges to s in S if fRc(r)sj(dr) _fRc(r)s(dr) as j _for every continuous
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c:R _E 1. Let._ # be the set of mappings a from T to S such that cr(R#(t);t)= 1 on T

and t _ fR c(r)cr(dr;t) is measurable on T for every continuous c:R -- E 1. Here

¢r(R' ;t) is the cr(t)-measure of a subset R' C R.

We refer to an absolutely continuous function _:T _E as a "relaxed curve"
n

if _(to) <B ° and _(t) belongs, a.e. in T, to the convex closure of the set

{ g(_(t), t, r) [ r _ R#(t)}. This definition is equivalent, in view of our assumptions and of

[ 1, Th. 3.1], to the statement that _ = _(. ;or, bo) satisfies the relations

_(t) =_Rg(_(t)'t'r)a(dr;t) a.e. in T,

(to) : bo,

#

for some (_ _._ and b ° e B o. (This definition is also consistent with the one in

[ 1, section 3] forA=E .)
n

We can state

Theorem 3.5. Let Bo, B1, T, R, R #, and g satisfy Assumptions 3.2 and 3.4, and

assume that_(tl;O',b')_ •B 1 for somecr'•_ andb' •B . Then there exista
relaxed

_ _ l(tl;,r, o o ._#control (_ and a point b ° c B ° that minimize _ bo) on x B subject to theo

condition that _ (tl;_ , bo) _ B1; and the corresponding minimizing relaxed curve

_= _( • ;_,bo) can be uniformly approximated on T by a sequence _1,_2 .... of

absolutely continuous curves such that _j(t) = g((j(t), t,0j(t)) a.e. in T (j= 1, 2,... ),
#

the mappings Oj are measurable, and pj(t)eR (t) on T.

Let f(v, t, s) =fttg(v, t, r)s(dr) on E x T x S, let S*(t) ={seS [s('_*(t)) = 1} for
n

t_T letb = ((t "_ b ) and let E B* _ andA be defined as in the statement
' 1 1' ' o ' m.' k''k' k

of Theorem 3.3. Then either condi_on (3.3.1) or eonditinns (3.3.2) through (% .3.7)

*
of Theorem 3. :_ are satisfied, with y, g,p, R , and r replaced by, respectively,

},f,_,S*, and s.
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Furthermore, condition (3.3.5) of Theorem 3.3 implies that, a.e. in T,

(3.5.1) z(t)" g(_(t),t,r)= Min z(t). g(_(t), t,r)

r£R

for every r in the support of _(t), if R#(t) = R on T.

4. PROOF OF THEOREM 2.2

The proof of Theorem 2.2 is essentially contained in the lemma that follows

and that resembles, in many respects, Lemma 3.1 of [ 3, p. 132] . The convex set

W is patterned after a construction of McShane [ 6, pp. 17-18]. Brouwer' s fixed point

theorem appears to have been first applied in a similar context by H. Halkin [7, p. 75].

Lemma 4.1. Let (p,b) minimize xl(p,b) in _ x B subject to the conditions

x_(p,b) = 0(_=2 ..... n). Let T*,_'*,_/_ define local variations for x in_x B at

(p,b). Then there exists a nonvanishing vector }, in E n such that )1 >i 0,

and

(4.1.1) X- Dx(p, b;t*, r) >/ 0 for all t*c T* and re R*(t*),

(4.1.2) _," Dx(p, b;b) >_ 0 for all b eB.

Proof. We shall use the notation that we have introduced in section 2. Let

V 1 = {Dx(p, b;t*, r) It* • T*, r• R*(t*) }, V 2 = {Dx(p, b;b) ]b• B}, and let W be the convex

cone in E n generated by V 1 U V2; that is

W=lalvl +.. .+anvn]VieV1U V 2, a i >/ 0(i= 1 ..... n)} .

Assume now, by way of contradiction, that there exists no vector X with the stated

properties. Then we can easily deduce from elementary properties of convex sets

that there exists a point w = (w 1, 0 ..... 0) in the interior of W, linearly independent
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vectors (points} w i e W, and positive numbers el(i= 1 ..... n} such that

n

(4. i. 3) W I
i

< 0 and w = c w i.

i=l

By the definition of W, there exist points t ij c T*, controls pij e _*(ti)),

points b ij e B and numbers a ij >/ 0 (i, j= 1..... n) such that

(4.1.4) w i = _ a tj " Dx(p,b;tij,piJ,biJ) (i=l ..... n)

j=l

where, for each i, ), Dx_, b;t ij, pij, biJ) either represents Dx_, b;t U, pl)) (and is

independent of biJ), or represents Dx(/_,b;b ij) (and is independent of t ij and pij). The

matrix (wti) (i, t = 1..... n) is nonsingular since the vectors w. are linearly independent.
I .

- tll]l i2J 2

Let now c_ be.... sufficiently small so that the sets N k ( , a) and Nk2(t , fl)

t 11 ] 1 k t12j 2 - _ 1 _
are disjoint if(k1, )_/( 2' ), c_ z c_ and/3 _ c_, let _ < 1, and let

(,i) a kj (i=l IA =lhCEn 10_5i'<_/ ..... n) .
k l

For every 5cA, let wU(5) = aqSl and 0U(6) : 0 respectively wq(6) : 0and

0iJ(5) = aiJ5 i if Dx(p,b;t ij, ¢uiJ,b ij) represents Dx(p,_);tij,p ij) respectively

Dx(p, b;biJ). We observe that the sets Nnj+i_n(tiJ , wiJ(6)) are disjoint and

n

_ "011(6) - 1 forScA.

i,j:l

We now consider, for each 5(A, the "perturbed" mapping p _(6) : pT(t o,

pO, wo(5)) = [pU,Nn j-n+i (tlj'_lJ(6)) (i,j=l ..... n);p] in _ and the "perturbed"

point b'(6) = 0o(5) • b ° in B. By condition (2.1.2.2), the function

5_(5) = _(¢u°(6), 0 °(5)) = x(p'(6), b'(6)) from A to E n is continuous in some
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neighborhood/v (relative to A) of the origin 0 of E and has a differential at 0
n

(relative to z:@. Furthermore, by (4.1.4), the right-hand derivative

n

_,_ 6=0 = _ _0_ n_ _ _ o_o_ to )/'86 k _ t g Ico tu ), 0 Q(8 ))//_co i]" _coi](6 )//_8 k 3_ (w tu ),

i,j=l

0°(6 ))/O0 ij. o0iJ(6 )/26 k) 6 = 0 = _ Dx ( p,b;t kj, pkj, bkJ ) akJ = Wk (k= 1 ..... n).

j=l

Thus the jaeobian matrix 76(0 ) :(0_ (0)/06])7, j= 1 is nonsingular.

Let a(6)= (_6(0))-1(_6)-_'(0) -_6(0) • 6), and let c = (e 1 ..... en).

We shall now show that the equation

(4.1.5) 6 = 3,c - a(6 )

has a solution 6 (Y) for all sufficiently small positive 3'. Indeed, since 7(0 has a

differential at 0 (relative to A ), there exists a positive /3o such that

e .

j ai(6 ) I 1 mm
_< 4 c 6 max

max

and

where

Let

6¢A' if o<6i-<<flo(i=l ..... n),

i
c . = Min c , c

min max
i

i i
= Max c, and6 = Max _ .

max
i i

1

O< fl -_<rio, 3' = _ B/ema x,

and

A,,3_={6eA'[ 16i-Tei[..<12 Ycmin(i=l'2 ..... n)}.

Then we can easily verify that A " is homeomorphic to a closed ball in En, and
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_((5(3')) - _(0) : 3'_(0) c = 3'

hence

yc - a((5 ) is a continuous mapping of A" into itself. Thus, by Brouwer' s fixed point
3'

theorem, there exists 6 = (5 (3') satisfying equation (4.1.5). It follows then from

relations (4.1.3) and (4.1.5) that

cw i=Yw= (3'w 1,0 ..... 0);

i= 1

_'I((5(3")): _i(o) + 3'wI < _I(o) : x1(;,_ -)

and

_((5(T)) = 0 (J_=2 ..... n).

Since p' ((5(3'))and b'((5(y)) _ B for all /3-'__/3o and (SEA" C A and since3'

6(3") ¢ A" andi'(6(3'))= x(p'(6(y)), b' ((5(T))), we conclude that, contrary to
3'

i
assumption, (p, b) does not minimize x (p, b) subject to the restriction that

x _(p,b) = 0 (_ : 2 ..... n). This completes the proof of the Icmma.

4.2 P roof_o_fThcorem_2=2. Let c = (b, bl) for bc B and b_¢ B_, let c = (b, bl), and
1

let C = B x BI. Then 0_,c)minimizes x (p,b) onyx C subject to the restrictions

x_(0,b) - _f(b_) = 0 (f=l,2 ..... n).

Let the function y = (y0, yl,...,yn) on,_ xC be defined by

0

y (p,e): y0(p,b,b_): xl(p,b),

y£(p,c) : y£(p,b,b_): x_(p,b)- _(b_) (_:i ..... n).

Then we verify that (T*, _*,.4 _) define local variations for y in _ x C at (p, c). It

follows then, by Lemma 4. i, that there exists a nonvanishing vector/z= 0z0,/_ I..... _zn)
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i #2, ...
inEn+ landavector k = Os0+/s , ,/In) inEn such that# 0 >i 0and

(4.2.1) _ • Dy(p,e;t*,r)= X" Dx(p,b;t*,r) >_ 0 for allt*c T * and r_R*(t*

and

(4.2.2) /_ • Dy(p,e;e) = g0Dx1(p,g;b) + (X- _051 ) • (Dx(_,b;b) -

dpb_(b_)(b _-b_)) >i 0 for allbEB

andb_¢ B_, where 51= (I,0 ..... 0) E E . We observe that Dx(p,b;b)= 0; hence,n

setting b = b in (4.2.2), it follows that

(X - #051) " (5b_(g_)(b _ - g_) _< 0 for all b_ cB_.

Since _ is nonvanishing, either ), is nonvanishing or # _u0, _0, 0 ..... 0), 0= > 0,

and

1 /b*lb* = Man _bl_(b_)b_ .
bT"1"1 bT _B_

iJ

5. FUNCTIONS OF CONTROLS DEFINED BY ORDINARY

DIFFERENTIAL EQUATIONS

Proofs. We shall use the notation of section 3 and we shall make, at first, the same

assumptions as in Theorem 3.3.

Let, for any integrable function f from T to some euclidean space, T' (f) be

the set of all the points t* in T such that if(t*) I is finite and

J_lim [-_j[1 _v_'. f(t)dt = f(t*)

]

for all sequences ( M._ _j=l of closed subsets of T that are regular at t*. It is well

known [8, Th. (6.3), p. 118] that the set T' (f) has measure IT [.
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Now let D ° be a bounded convex open set containing the range of y, let

_o = _bD be defined as in Assumption 3.2, let D be a dense denumerable subset of

D ° and R a dense denumerable subset of toUT R_(t), and let g(v,-,p()) be the

function t _g(v,t,p(t)). Then

T* = _-_ (T'(g(v,.,r))NT'(g(v,',p('))))nT'(¢o)n [to, tI)

veD ,rcR

has measure IT [. We also verify that T' {g(v, •, r)) D T* and T' (g(v," ,pl')))D T* for

allveD °and rcR . Indeed, lett*eT*, veD °, reR , and letvi,v 2,.... bea sequence

in D converging to v. Then, by Assumption 3.2,

limsuptl_iV[j _ m ]
g(v, t, r)dt - g(vi, t*, r)

J

limsup _ [g(v,t,r)-g(vi, t,r) Jdt -_-
j_o j .

i

lim sup Iv - vii _ ¢o(t)dt = ,n(t*)lv-vil (i=1,2 .... ),

j--_ J
}

for every sequence {Mj} that is regular at t*. Since g(. ,t*, r) is continuous on D °,

wc conclude that T' (g(v,.,r)) D T*. We similarly show that T' (g(v,.,p('))) _'D T*

for all v_D °.

We next define sets Nk(t, o_) and the corresponding collection _. Let m = n 2,

and let

= 2-mi+ m-k+ I 0
r/k_l, i , N k = (_k,i,_k_l,i],

i=l

and

Nk(t ) = (t+ Nk) ('1 T(teT;,k=l ..... m; i=1,2 .... ).
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We then define Nk(t,_ ) for _ >/ 0 as Nk(t)n (t,t + flk(t, o0], where flk(t,(_) is

nonnegative and such that INk(t, _) [ = Min((_, [Nk(t ) [). We observe that diametel

(Nk(t , _)) _< 2m tNk(t, oL) [ for all t and or, and [Nk(t, o¢) [ = a for sufficiently small ¢

_r,d t < tI .

We shall henceforth use the above definitions of T* and ¢_, as well as the

definitions of_,_* and R* of section 3. We shall also use the notation of Definition

2.1. Let t ij ( T* and pij _ _,(tiJ) (i, j= 1 ..... n), and let

p, = p, (t n, pO, wD ) = [pD Nn J-n+ 1(tD 0)5) (i, j= 1 ..... n_;p]

for all w°C_(t°). Finally, let B = B*,b = bo*, and for p_,_ and bEB, let the

absolutely continuous function y = y( • ;p,b): T _ be the solution of the system
n

y(t) = g(y(t), t, p(t)) a.e. in T,

Y(to) = 0o(b ).

It follows from Assumption 3.2 and from well known theorems that there

exists a neighborhood B ofb in B such that the function y, as just defined, exists,

is unique, has its range contained in D °, and depends continuously on b, uniformly

in p, for all b c t_ and all "measurable" p such that the set (t eWE p(t) J p(t))

has a sufficiently small measure.

Lemma 5.1. Let p' = p'(t°,p °, wo). For all teT, bsB, t II eT*, and

pij e_,(tiJ) (i, j = 1 ..... n), the function (wo, b) _y(t;p', b) is continuous in some

neighborhood F of (0 °,b) in _2(t °) x 13; and, for all i, j= 1 ..... n, the limit defining

the right hand derivative of y(t;p t , b) with respect to ¢jJ at 0 exists and is uniform

in F, and this derivative is a continuous function of (wo, b) in F. Similarly,

1 (y(t; p', bl+0(b2-bl) ) - y(t;p', bl) )lim 0
0_+0
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defining the right hand derivative

ay(t;p',b 1 + 8(b 2 - bl))/a0 0:0

exists, this limit is uniform in F x F, and it is continuous in F x F.

Finally, let x(p,b) = Y(tl; p,b). Then

_kX(_,b;t*, p*) = Dx(p,b;t*, p*(t*)) = Z(t*) (g(y(t*), t*, p*(t*)) - g(y(t*),

t*,p(t*))) (k= I, 2 ..... n 2, t* _T*,p* _*(t*)),

and

o%(_)
Dx(p,b;b) = Z(to) _ (b-b) (h cB),

where the matrix function Z is the solution of the system

Z(t) = -Z(t)gv(Y(t),t,p(t)) a.e. in T, Z(tl) = I (the unit matrix).

Proof of Lemma 5.1. Let t D and pn be fixed. For fixed ]- and'j in {1, 2 ..... n},

let t*=t IJ, p,=plj, and M(c_) = NnT_n+]-(t*,(_ ) for a _ 0.

We observe that, for every sequence (_1' (_2' " " " converging to + 0, the

sequence <-Ma} = (M(O_a)}a=l is regular at t*, IMa-Maf = 0 for all a, and IM(ol)I=_

for sufficiently small 5. It follows that, for all vcD °,

lim 1 _ g(v,t,p(t))dt = g(v,t*,p(t*))

_+0 _ JM((_)

ifp=p,p = p*, orp(t) = rcR on T.
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We next consider y(t;p', b) as a function of (To, b). The measure of the set

(teT I p' (t °, pO, _ [] ) iL p, (t o, pO, _o[] ) ) converges to 0 uniformly in $2(t°) when

!wo__.;o = _ [ wiJ 5iJ[_o°

i,j=l

Furthermore, [g(v, • , r) and Jgv(V, • , r) J are bounded by some integrable function

q;1 on D° x R. We conclude, using standard arguments, that y(t;p' ,b) is a uniformly

continuous function of ( w n, b, t) and y(t; p' , b) ¢ D° in F x T, where r is some

neighborhood of (0°,b) in $2(t °) x B.

Now we fix b and sufficiently smal! wD((i,j) _ (i,j)) as well as =t,_, t °, and pU,

and set p(_) = p' (t °, pO, coo ) and y(t;(_) = y(t;p((_), b) for w1-,]-= (_ >/ 0 and t • T. Then,

for sufficiently small _, p(t;_) = p(t;0) for t £W - M(_), p(t;_) = p*(t) and p(t;0) = _(t)

for t _M((_), y(t;_) = y(t;0) for t _<t*, and, for t>t*,

1
A(t;(_) = _ (_(t;a) - y(t;0))=

1 _tt
- (g(y(o;_), o ,_(o;_)) - g(y(o;o), o,_ (o;o))) dO;
c¢ ,

: gv(Y(0;0), 0,p(0 ;0)) A(0;_) dO
A(t;a) S[t*, t] -M((_)

+ - (g(y(0;(_), 0, p*(O)) - g(y(0;0), 0,p(0)))d0 +

(_)

+ (gv(y(O;a), 0,p(0;0)) - gv(y(0;0), O,p(0;0)))A(e;(_)de,
_[t*, t] -M(a)
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where y(O;a) is, for each 0 and a, intermediate between y(O;a) and y(O:O).

"_(. ;a) converges uniformly to _'(.;0) as a _0, [gv(V, t, r) [ _< _o(t) on

D° x T x R, p* _ R*(t*), and T*C T' (¢o), we can assert that

lim 1 _ (g(_(O;a),O,o*(O)) - g(_(O;O),O,o'(O)))do

a_+O a u M(c0

: lim 1 _ (g(y(t*;O),O,o*(O)) - g(y(t*;O),O,_(O)))do

a_+ 0 a JM(a)

Since

g(y(t*;o), t*,_(t*)),= g(y(t*, 0),t*,o*(t*)) -

and that this limit is uniform in F x T. Furthermore,

gv(Y(O;_),o,_(o;o)) - gv(_(o;o), o,_(o;o)) I

converges to 0 with (x,for each fixed 0 in T, uniformly in F, because gv(',t,r) is

continuous, hence uniformly continuous, in some compact set containing D ° , for

every t and r. Moreover, the uniform convergence, hence also the houndedness, of

the second term on the rightof (5.1.I) implies thatzh(.;.)isbounded. Since

[gv(V,t,r)[ "-_bo(t) on D ° x T x R, itfollows then that the last term on the right of

(5.i.i)converges to 0 with a, uniformly in F x T.

Let r/(t)= lira zh(t,¢_)for tc T. We can now conclude that7/exists, is

Ce_+O

unique, that this limit is uniform in F x T, and that

t

(5.1.2) rT(t)= _i* gv(Y(O;O)'O'p(O;O))'o(o)dO

+ g(y(t*, 0), t*,p*(t*)) - g(y(t*, 0), t*,_(t*)) for t > t*.
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Now we must investigate the dependence of _? on (c0o, b). Let (c0_, b 1) and

nb _
(092, 2) be both in r and be such that o)1= _2 = 0, and let yl(-),pl(.), _ 1(. ) and

y2(.), p2(.),_ ? 2(. ) represent the corresponding determinations of y(. ;0), p(. ;0), and

rl(:). Leta!_oM:{t._T[Pl(t)_P2(t)} and zS(.t)= [n i(t)-n. 2(t)[. Thea (5.1. 2) yields

t

A(t) _< _ ¢o(O)(Irtl(O)l + IT/2(O) l)dO+_ _o(O) A (O) dO
_M _t

+ _' Igv(yl(O), O,pl(O)) - gv(Y2(O), e,pl(o)) [-Irl 2(e) I do
"T

+ [g(yl(t*),t*,p*(t*)) - g(y2(t*),t*,p*(t*)) I

+ Ig(yl(t*), t*,p(t*)) - g(y2(t*), t*, p(t*)) [ for t > t*.

We can directly verify from (5.1.2) that 77 is uniformly bounded on F x T. We can

show, therefore, as in a previous argument, that the third integral in the last

O []
relation converges uniformly (on I) to 0 with ]Wl-W2 J + [bl-b 2 I The first integral

converges uniformly to 0 because [MI _ 0 uniformly, and the non-integrated terms

converge to 0 uniformly with [Yl(t*)-Y2(t*) I. It follows that zS(. ) _ 0 uniformly on F

as [wlO-w2oJ + [bl-b2J_0.

We can solve equation (5.1.2), specifically when coo = 0 ° b = b, and

r =p*(t*), and find that, fork= n_- n+i,

D_kX(p,b;t*,p*) = _? (tl) = Z(t*)(g(y(t*),t*, r) - g(y(t*),t*,p(t*))).

Thus Ddl_kX is the same for all k and all p*c_*(t*) such that p*(t*) = r.

Similar arguments prove our assertions concerning y(t;p', bl+ 0(b 2 - bl)) as

a function of 0, and yield the representation of Dx(p, b;b).

This completes the proof of the lemma.
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5.2 Completion of the proof of Theorem 3.3. We shall now show that (T*,_*,M_)

define local variations for x in _ x B at (p, b). It is clear that, by construction,

the collection .z_ satisfies condition (2.1.1). Since the sets Nk(t,a) are unions of

intervals and pije2_ (i,j= 1 ..... n), the mapping p' belongs to _.

It follows from Lemma 5. I that the function (wo, 0 ° ) _ _(wo,_o) satisfies

condition (2.1.2.2). Indeed, we have shown there that the right hand partial

derivatives of _ with respect to each w l] at c01l= 0 and with respect to each 01l at

0 U= 0 exist, are continuous, and the limits defining them are uniform for wa and

0° sufficiently close to 0 ° . Finally, statement (2.1.2.3) follows directly from

Lemma 5.1.

Thus (W*,._ *,._ satisfy the conditions of Definition 2.1 and Dx(_,b;t*, r) and

Dx(p, b;b) have the representations described in Lemma 5.1. All the statements of

Theorem 3.3. except statement (3.3.5), now follow directly from Theorem 2.2

after we set z(t) = zT(t)X on T. Furthermore, statement (2.2.2) implies (3.3.5),

with R*(t) replaced by R*(t). Since, however, g(v, t, • ) is continuous on R for all v

and t, we conclude that statement (3.3.5) is satisfied.

Finally, consider the special case when R#(t) = R on T and ,_' contains all

the constant mappings into R . In that case, for each r c R and t* • T*, the set
oo

_._ *(t*) contains the constant mapping from T to r, and R*(t*) = R = R.

This completes the proof of Theorem 3.3.

5.3 Proof of Theorem 3.5. The first part of the theorem, concerning the existence of

bo and _ as well as of the approximating sequences, follows directly from [1, Th. 3.1] .

Next we observe that, for S#(t) = {s•S [s(R#(t))= 1) on T, S, S #, f, and -eL # satisfy the

assumptions made in Theorem 3.3 about R, R #, g and _, respectively. Furthermore,

since f(v, t, s) = g(v, t, r) on E x T for every measure s = s~ concentrated at the single
n r
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point r, it follows that the set of cr in .._l.# that are admissible (with respect to f and

S#) at t* contains .-_*(t*). Finally, there exists a dense denumerable subset of S

We may now apply Theorem 3.3, with S, S , f, andcontaining (s r Ire R }. # "d_#

replacing R, R #, g, and 2_ , respectively, and derive directly the second part

of Theorem 3.5.
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THE REDUCTION OF CERTAIN CONTROL PROBLEMS

TO AN "ORDINARY DIFFERENTIAL" TYPE

by J. Warga*

The most commonly encountered problems of the mathematical

control theory are of the "ordinary differential" type, that

is, are defined by systems of ordinary differential equations

involving control functions as well as by certain additional

relations that must be satisfied by the control functions and

the state variables. An interest has also been evidenced in

certain more general problems in which, for example, ordinary

differential equations are replaced by difference-differential,

or, more generally, delay-differential equations, or in which

absolutely continuous solutions of differential equations are

replaced by piecewise absolutely continuous solutions with at

most k jump discontinuities. The purpose of the present note

is to show that many such non-standard problems can be easily

transformed into an equivalent "ordinary differential" form to

which all the, by now, classical results of the control theory

are directly applicable.

Let U be an arbitrary set, E n the euclidean n-space,

A _ E n , B C EnX E n , T the closed interval [to, t I] of the real

axis, V a mapping from T into the class of nonempty subsets of U,

and f: E ×T×U ÷ E . An "ordinary differential" control problem
n n

consists in determining a function u: T + U and an absolutely

continuous function x=(x I, x 2,.., xn) : T + E n such that xl(tl )

is minimum and

* This work was supported by N.A.S.A. grant NGR 22-011-020,

Supplement i.
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and

(0.i) dx(t) = x(t) = f(x(t) t, u(t))
dt

(0.2) (X(to) , x(tl)) £ B,

(0.3) x(t) e A (t £ T),

(0.4) u(t) £ V(t) (t £ T).

a.e. in T,

We shall now transform into an "ordinary differential"

form a few of the more frequently encountered non-standard

certain

problems, namely (a)^delay-differential control problems,

(b) staging problems, and (c) problems involving variable times

as well as constraints relating the values of x on a finite

subset of T. For the sake of clarity, we consider only relatively

simple versions of these problems.

I. Advance-delay-differential problems. Let To, to, T I, and t 1

be fixed, To< to< tl< TI, and let an absolutely continuous

increasing function p be defined on [To, TI]. Assume that

p(t)<t, To!P(to), and tl_ p(Tl). Let Po(t)_t and

Pi+l (t) = p(pi(t)) (i=0, +i, +2 ..... Pi(t) e [To, TI]). Let

U, V, A, B, and T be defined as before, and let the functions

x and U, into respectively E n and U, be given on the intervals

[To, t O ) and (tl, TI]. Let k(t) and £(t) (te[to, tl]) be integers

defined by Pk(t)+l(t) < To_ Pk(t) (t) and

P-£(t) (t) ! T 1 < P-%(t)-i (t).

(Such integers exist because p(t)-t is negative and bounded

away from O. We also observe that k and £ are step-functions).

For any function y on [To, TI] , let

y(t) = (Y(Pk(t) (t)), Y(Pk(t)-i (t)) ..... y(po(t)) ..... y(p_£(t) (t)),
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%, %,

and let f(y,v,t) be defined for every t e [to,tl] , every

e E n x...x En(k(t) + £(t) + 1 times), and every

e U x...x U(k(t) + £(t) + 1 times).

We consider the problem of minimizing xl(tl ) subject to

the functional equation

(i.i) x(t) = f(x_(t), _(t), t) a.e. in [to,tl] ,

and subject to relations (0.2), (0.3), and (0.4). We also

restrict x to be absolutely continuous on [to,tl]. We

shall show that this problem can be reduced to the "ordinary

differential" type.

Let k = k(tl) , i = £(tl) + i, xi(t) = x(Pi(t)) and

ui(t) = u(Pi(t)) (t e (P(tl),tl] , Pi(t) 6 [TO,T1]),
^

y = (y _ ..... Y_) and v = (v _ ..... v_[) (Yi e En, v i e U) , and
^ ^

= f(y,v,t) (t (P(tl),tl] , i = 0,i ..... k).let _i (y,v,t) Pi(t) %, _

Let also k I be a positive integer defined by

Pk' (tl) >-- to > Pk'+l(tl )' and let _ e (P(tl),t I] be defined by

Pk' (_) = to" Let y(t) = Xkt (t) on [_,tl] and y(t) = Xk_ (_)

on [p(t I) ,_) .

We now observe that our problem is equivalent to the

"ordinary differential" problem of minimizing xol(t I) subject

to the differential equations

xi(t) = _i(x(t),u(t),t) a.e. in [P(tl),t I] (i=0,1 ..... k/-l)

(1.2) y(t) = Xk' (t) = _k' (x(t),u(t),t) a.e. in [_,t I]

0 a.e. in [p(t I),_),

and subject to the restrictions
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(1.3) Xi+l(tl) = xi(P(tl)) (i = 0,1 ..... k'-l),

(1.4) (y(p(tl)), x o (tl))£ B, Y(tl) = Xkl(tl),

(1.5) xi(t) 6 A (t e [P(tl),tl], Pi(t) e [to,tl]),

(1.6) ui(t) e V(Pi(t)) (t e [P(tl),tl],

Pi(t) £ [to,tl])

2. Sta@in_ problems. We consider the "ordinary differential"

control problem but, instead of restricting the curve x to

be absolutely continuous on [to,tl], we require that x be

piecewise absolutely continuous, with at most k jump discontinui-

ties on the interval [to,tl]. We also require that

x(Ti+) (= lim x(t)) and x(li-) (= lim x(t)) satisfy relations
t>T. t<T

1

1 l

of the form (x(Ti+) , x(Ti-)) e B i C E n × E n at the i-th

point of discontinuity T i in [to,tl]. The values of

T. (i=l,...,k) can either be preassigned, or can be freely chosen.

I_ the latter case, however, we assume that V(t) = U for all t.

A typical example of such a problem is the guidance of a rocket

that can jettison certain "stages" when they are no longer

needed.

We let

T O = t O, Tk+ 1 = t I,

xi(8 ) = x(T i + 8(Ti+I-To)) (0<0<l, i=0,1 .... ,k),

xi(0) = lim xi(8), xi(1) = lim xi(8),
8+0 8_i

ui(8 ) = u(T i + 8(_i+ 1 -To)) (0 < 8 < i, i=0,1 ..... k).

If the _i(i=0,1,..., k+l) are preassigned, our problem

becomes one of minimizing xkl(1) by a choice of an absolutely

continuous function x = (Xo, Xl,...,x k) on [0,i] satisfying

the relations
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(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

If the T.
1

[a,b], we may treat them as constant functions on

adjoin the following relations:

dT.

= 0 a.e. in [0,1] (i = 0, .,k)
d8 ""

a ....< To(0) <...< Tk+l(0) < b.

3.

dx i (8)

d8 - (Ti+l - Ti) f(xi(8) ,

T i + 8(Ti+ 1 - Ti) , ui(8))

a.e. in [0,i] (i=0,1 .... ,k)

(Xo(0) , Xk(1)) e B

(xi(1) , Xi+l(0)) e B i (i=0,1,...,k-l)

xi(@) e A (0 < 8 < i)

ui(8) e V(T i + %(Ti+ 1 - To)) (0<8<1, i=0,1,...,k)

can be freely chosen in some preassigned interval

[0,1] , and

Variable times, and constraints on a finite subset of [to,tl].

We now modify the standard "ordinary differential" problem as

follows:

Let Ti(i=l,..,k) be either preassigned or free to choose subject

< _ <...< T k < t I. In addition to relationsto the relations to - o - -- --

(0.i), (0.2), (0.3), and (0.4), we require that the absolutely

continuous function x satisfy the relation

(X(to), ,x(T I) ..... X(Tk), x(tl)) _ B #,

where B # is a given set.

We may proceed as we did for the "staging" problem, except

that the relations (2.2) and (2.3) are replaced by
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and

(3.1) (Xo(0) , Xl(0) .... , Xk(0), Xk(1))e B #

(3.2) xi(1) = Xi+l(0) (i=0,1 ..... k-l)

Northeastern University

Boston, Massachusetts
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S UMMAR Y

The necessary conditions for an impulsive trajectory to be optimum

can be stated in terms of Zawden's primer vector. Recently, the primer

vector has also been shown to have significance for non-optimal trajec-

tories, indicating how these trajectories can be improved. This paper

presents a simplified derivation of both results from a single viewpoint.

In addition, a computational scheme for determining optimum n-impulse

trajectories is suggested.

Introduction

The term "primer vector" was introduced by Lawden (Ref. l)to de-

note the three adjoint variables associated with the velocity vector on an

optimal trajectory. Zawden derived a necessary condition for the opti-

mality of impulsive trajectories in terms of the magnitude of this vector.

(Optimum in this memo is defined as minimum characteristic velocity. )

Recently (Ref. 2), the definition of the primer vector has been ex-

tended to non-optimal impulsive trajectories. It can then be shown that

the primer gives a clear indication of how the original, or reference,

trajectory can be improved; i.e., how the reference trajectory can be

altered so as to decrease the total characteristic velocity while still

satisfying the boundary conditions. The two main results of (Ref. 2)

are

(i)

(z)

the criterion for an additional impulse, Using this test indicates

whether or not the reference trajectory can be improved by an ad-

ditional midcourse impulse.

the transversality condition. Using this test one can determine how

the interior (midcourse) impulses of the reference trajectory should
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be moved in both position and time so as to decrease the character-

istic velocity, In addition, it is possible to determine whether

initial and/or final coasts will improve the trajectory.

In this paper the results of (Ref. 1) and (Ref. Z) are rederived from

a single viewpoint. In addition, a computational scheme for determining

optimum n-impulse trajectories is suggested.

Formulation and Notation

The equations of motion are

x = V¢ (x, t) (1)

where _ is the gravitational potential. For impulsive trajectories, it

is assumed that the velocity vector v = (vl, v_, vs) can be altered dis-

continuously; howeverp the position vector x = (xl, x_, x_ ) must be

continuous. The criterion of optimality is the sum of the magnitudos of

the velocity increments,

J : r_IAVkl
k

The optimization problem may then be stated as follows: given an

initial state (Vo, Xo) and a final state (vf, xf), find the trajectory which

connects these states in a given travel time, tf, such that J is mini-
mized.

Assume that some trajectory r has been found which satisfies the

boundary conditions and consider small perturbations about 1_. Let

(x, v) and (x', v') denote the state vectors on r and on the perturbed

trajectory I _' respectively. Define

6x(t) = x'(t) - x(t)

Ov(t) = v'(t) - v(t)
(2)

If F and F' are sufficiently close to justify a linear analysis, then

(6v, 6x) are, to first order, the solutions of the following variational

equations of (1):

= (3)

6_,, G 0 6vi
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where I is the (3 x3) identity matrix and G is the "gravity gradient"

matrix. The elements of G are given by

gij = bx i _x
3

In second order form (3) can be written

_x"=G 6x (4)

The (6x6) transition matrix f_(t, _') for this system can be partitioned

into four (3 x3) matrices as follows:

_11(t, r) _iz(t, T))
_(t, 7")= (5)

f_(t,_') f_2(t, T),

The adjoint system to (3) is

where

identical to (4).

to (5):

_ o -G I u !' t
_k -I 0 / h

U and _ are 3 -vectors. In second order form this becomes

_': c_ (6)

Hence the transition matrix for (_., _) will be identical

It) t C
It can be shown by differentiation that the identity

X • 6v-4- 6x = constant

(7)

(8)

holds everywhere on 1_. This equation is the basis for most of the

analysis which follows.
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Consider F, a two impulse trajectory (or two-impulse segment of

a multi-impulse trajectory), with impulses &v o at t and &vf at tf.
o

The primer vector _. is defined as the solution to system (6) which

satisfies the following boundary conditions:

&v
o

)k(to) = A ° = Z_Vo I

&vf

k(tf) = kf - &vf !

That is, at the endpoints of r, _ has unit _nagnitude and is aligned with

the velocity increment. A solution satisfying these boundary conditions

can be found if _21a (tf, to) is non-singular; the initial value of _ is

given by

_'o = f_la-1 (tf, t o ) (kf - fl11(tf, to) ko)

The above definition of the primer vector is extended easily to

multi-impulse trajectories. In such cases, the right hand side of (6) is

different on the different segments. At each impulse point, tk, k is

again defined as a unit vector in the direction of the impulse

&v k

A*(tk) = i Avki

The solutions from different arcs are, therefore, patched together so

that _, is continuous over the entire trajectory. The primer rate k

will, in general, be discontinuous at impulse points. {On optimal tra-

jectories, however, it will be shown that )_ is continuous and is ortho-

gonal to k at interior impulses. }

Criterion for Additional Impulse

Consider the two impulse trajectory r {shown schematically in

Figure Z) which goes from x o to xf in the prescribed transit time.

r" may be a complete trajectory or a two impulse segment of a multi-

impulse trajectory. By Lambert's theorem (Ref. 3) there are no other

two impulse trajectories (in the neighborhood of r ) which satisfy these
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boundary conditions. There is, however, a four parameter family of

three impulse trajectories which do satisfy these conditions.

Assume that l_ passes through the point x m at t = tm. The four

parameters used to describe a neighboring three impulse trajectory F'

will be the time of the midcourse impulse, tm, and the position rela-

tive to l_ at this time 5x m = x'(tm) - X(tm).

F _ is constructed as follows: The impulse (Av o + 6Vo) is applied

at t o so that F' will pass through x m + 5x m at tm. 1_' must be

continuous in position, but not in velocity. A small midcourse impulse

(SVm+ - 6Vm-) is required to null the position displacement at tf(6xf=0).

Finally, the impulse (Avf + 5vf) is applied at tf so that the final

velocity is matched.

The costs on 1_ and F', dropping the higher order terms,

are as follows:

on r : 5: J_vol + ]avf ]

°n r' : 5' = I _Vo + 5Vo I + i_v m +-6v m "i + JAvf+Svf [

The difference in cost, to first order, is

Av Avf

5J = _° .6Vo+ ]SVrn+ - 5Vm" [- --.Svf

l_vol IAvfi

From the definition of the primer vector,

55 = Ao • 5Vo + i 5Vm ÷ - 5Vm- i'- Af " 5vf

Using (8) this becomes

15Vm÷-  Vm'l*  Vm-I

This expression is homogeneous in (SVm+ - 5Vm- ) .

Denoting the magnitude of the midcourse impulse by c ,

6J = c (1 -Am " _)

where u is a unit vector in the direction of (SVm + - 5Vm" ).
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If 5J can be made negative, then F' represents an improvement

in cost over r. This can occur if, and only if, P(tm) > I . That is, if

P(tm) > l it is possible, by varying the direction of 5x m, to find a F'

such that the required midcourse impulse (SVm + - 6Vm" ) will point in

the direction of _m" Clearly, for this choice 5J is negative.

Therefore we have the following results:

(a) If r is an optimum trajectory (or a segment of a multi-impulse

optimum trajectory), it is necessary that p(t) _ l for all t in the

interval (to, tf).

(b) If p(t) > I for any t in the interval (to, tf), then there exists a

neighboring trajectory with an additional impulse which lowers the

cost. To first order, the greatest improvement in cost can be

realized by applying the midcourse impulse at the time the primer

magnitude reaches its maximum, and in the direction of the primer

vector.

If the time history of the primer vector is as shown in Figure Z, then

the necessary condition for optimality is satisfied. Figure 3 shows an

example of a case where an additional impulse improves the trajectory.

These conclusions are the result of a linear analysis, and, there-

fore, effects are additive. If, then, the primer magnitude exceeds unity

at more than one point, the reference trajectory can be improved (at

least to first order) by adding impulses at both points.

Finally, if the reference trajectory is two impulse, then there is no

other (neighboring) two impulse trajectory which satisfies the boundary

conditions. If p(t) < 1 for all t o < t <tf, then all neighboring trajec-

tories with more impulses actually increase the cost. In this case,

then, we have sufficient conditions for the reference trajectory to be

optimal. Figure 2 represents such a case.

Transver sality

In this section, an expression is developed which gives the differ-

ential cost between two neighboring trajectories. This expression is the

analog of the transversality condition of the calculus of variations. In

this case, however, there is wider applicability since neither trajectory

need be an optimum. This is in distinction to the finite thrust case, and

is a result of the fact that "cost" is incurred only at discrete points.
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Consider the two neighboring trajectories shown in Figure 4. Both

trajectories are initially on orbit C O at t o. On r, impulses are ap-

plied at t o and tf. r' , on the other hand, remains on C o until

tI (= to + dto) and then impulses are applied at tl and tf. Both tra-

jectories have terminal state corresponding to orbit Cf at tf.

The symbol d( • ) will be used to indicate noncontemporaneous

variations, that is

dx = x' (t + dt) - x(t)

To first order the relationship between dx and 6x is

dx = 5x + x dt.

On 1_, the cost is

J:IVo+VoL iv/vii
and on r'

J'-- Iv_ + -v,- I + I v_Cv[ + %1!

The differential cost is given by

5J =i ° • (dv/ -dVo-) - Xf" 5vf-

where dVo + = vl+ (to + dto) - v/ (to)

=6v++v+dt
o o o

and dv - = v dt
o o o

Since v is continuous (it depends only on position and time)

+ +
dv - dv " = 5v

o o o

Substituting in {9) and using (8)

5J = _ • 5x
o o

or, since 5x = dx - x + dt
0 0 0 0

: io " - {io" Xo+)dto

{9)

(10)
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This "transversality condition" represents the difference in cost between

two neighboring trajectories whose initial points differ in position by dx
o

and in time by dt o (and whose final position and time are identical).

Note that no considerations of optimality have been required.

If the final point differs by (dtf, dxf), the proper expression is

6J = -_f" dxf+ (if" x/)dtf (11)

Equation (10} can be put in more familiar form by adding A o" (Vo + -v o )= 0

and noting that dv = v - dt . Equation (10) then becomes
o o o

5J = - A • dv +A • dx + Hdt (12)
0 0 0 0 0

which is exactly the same form as the usual transversality equation for

finite thrust (optimal) trajectories. Similarly {11 ) becomes

5J = kf • dvf -if • dxf - H dtf (13)

Equations (I0) and (i i ) are the fundamental form, however, since the

differentials are independent.

Final and Initial Coasts

To test the desirability of an initial coast, the reference trajectory

is compared with a neighboring trajectory which has been allowed to

coast (dr° > 0) in the initial orbit (Figure 4).

Using the transversality condition (i0), the difference in cost to

first order is

55:i •dx°-(i°• o+idto o

Substituting dx o = Xo- dto' (the superscript minus refers to increments

along the initial orbit), this becomes

5J i " "-x:)dt °= 0 ° (Xo

Since dt > O, 55 willbe negative if
o

• " - -x+)< 0
i (x ° " oo
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From the definition of the primer _'o is parallel to Av o.

the last equation implies

(i < o
- o" ;_o )

or

ap >0
dt

t=O

Therefore,

In other words, if the primer magnitude exceeds unity immediately

after the initial impulse, an initial coast would lower the cost. Figure 5

is an example of this.

Similarly, it can be shown that if

dp <0
dt

t=tf

then a final coast improves the cost. The trajectories being compared

in this case are shown in Figure 6. For this case, it must be remem-

bered that, to meet the time constraint, dtf < 0. The primer in Fig-

ure 7 is an example.

Figure 8 represents a trajectory which is so far from optimal that

almost anything (additional impulse, initial coast, final coast) will im-

prove it.

Circular Coplaaar Orbits

In the special case of transfers between circular coplanar orbits

the above conditions have a simple geometric interpretation.

It is more convenient here to shift to polar coordinates. Equa-

tion (13) for a final coast becomes

5J =k 0 d8; -H dt; < 0

and for an initial coast, Equation (12) becomes

where

5J = - A o dO - + H dt - < 0
O O
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Let to o be the angular rate of the initial orbit and to f the angular

rate of the final orbit. Then the above conditions can be written

Final coast (dtf < 0): H/)t e > tof

(14)

Initial coast (dt > 0): _H/)t e < to
0 0

Now consider Figure 9. Here contours of constant J are plotted

against the prescribed central angle (cp) and trip time (T). These con-

tours are closed about the minimum J, or Hohmann, trajectory. The

value of J increases going outward from this point.

Along the contours, since J is constant,

5J = h 0 dcp- H dt = 0

_J
_J )

(Note:)t o = _--_-f, H =

The slope of the contours is thus given by

do /)tm =-_=H 0

To interpret equations (14) geometrically consider Figure 10. The

original two-impulse contours are shown as broken lines. Straight lines

with slope too and tof have been drawn tangent to these contours. The

solid lines represent contours of constant J when initial and final coasts

are considered. In region A, where m < too, initial coasts represent

an improvement. In region C, where m > tof, finalcoasts are an im-

provement.

For example, if a transfer corresponding to point i_1 is required,

it is cheaper to coast initially through angle A_ (which takes time AT)

and then perform the transfer corresponding to t:_ .

Also note that the set of points on the _ - T plane which can be

reached for the minimum {Hohmann) cost is a wedge (cross-hatched on

the figure). Any point in this wedge can be reached by a unique com-

bination of initial and final coasts plus the 180 ° transfer. Other points

may need either an initial or final coast, but not both.
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Moving Interior Impulses

Consider the two three impulse segments shown in Figure ii. The

differential cost between these two trajectories can be derived from

Equations (lO) and (II) and is given by

6J = [_m + • dx m- (_m +- Xrn+)dtm ] -[Xm'. dXm'(_j " Xm)dtm]

= (_ + - _ ) " dx + (H + - H-)dt (15)
m m 1TI m

where the equation

+ HI: I;m+'x+ xl (16)

has been used. dx and dt
m rrl

ently.

in Equation (15) can be chosen independ-

The following conclusions can then be drawn

{a) If the reference trajectory is an optimum, then it is necessary that

_,+ = _- and H + = H-

Since H is constant on any segment, it is therefore constant along

the entire trajectory.

If these two functions are continuous, then

Am " (Xm+ -Xm) : 0

(b)

Since A m is aligned with the velocity impulse this last equation

becomes

_. "_ =o
m m

dp
or -_-= 0 at impulse points.

If F is not an optimum, then a neighboring trajectory with lower

cost can be found by choosing

d,: m : - ¢ [i_ -_.r_ ]

(17)
at m = - e [H + - H'J
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If ¢ is "sufficiently small, " then the three impulse trajectory

which passes through x m + e dx m at t m + ¢ dt m will represent

an improvement over r.. Therefore, Equation (15) tells us how

interior impulses should be moved in position and time so as to

reduce characteristic velocity.

A Gradient Scheme for Optimum Multi-Impulse Trajectories

In this section, a technique is suggested for determining optimum

n-impulse trajectories (where n is open) starting with the two impulse,

or "Lambert, " solution (or any other nominal trajectory).

This technique is based upon two results: (1) the criterion for an

additional impulse, which tells when an additional impulse should be

added, and (2) the transversality equation as developed in Equation (15)

which tells how interior impulses should be moved.

A necessary part of this technique is a subroutine which solves

Lambert's problem; i.e., given both position and velocity at two differ-

ent times, find the trajectory which connects them. Also, it is desirable

to have a subroutine which computes the transition matrix f_(t, 1")

(Equation (5)). For the inverse square field, the formulation of the

Lambert problems by Pines (Ref. 4) and the transition matrix routine

by Goodyear (Ref. 5) represent elegant answers to these needs. The

formulation of both is done in the "universal variables" and thus is valid

without modification for all conic sections.

The iteration procedure is as follows: given the position and velocity

at two terminals plus transit time, determine from the Lambert sub-

routine the two impulse trajectory which connects them. Imposing the

appropriate boundary conditions on the primer, determine the time his-

tory of p(t). If the primer magnitude appears as in Figure Z, then the

two impulse trajectory is at least a local optimum. If the primer mag-

nitude rises above 1.0, then a third impulse must be added. Let t m

indicate the time when the primer reaches a maximum. Using the

boundary conditions 6X(to) = 0, 6x(tf) = 0, it can be shown that for any

trajectory F' passing through X(tm) + 6x m,

(SVm+ - 5Vm) = A 8x m

where A ='f_(tm, tf) f_l_-l(tm, tf)-f_(tm,t )_1_-1o (tm' to)
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For maximum improvement, (6Vm + - 6Vm" ) should be parallel to

)_m" Therefore, assumirg A is nonsingular, choose

6x =_A -I )_
m m

where e is a small constant to insure that the range of linearity is not

violated.

Two Lambert problems are then solved.

(1) Connecting (Xo, to) with (x m + 5Xm, tm)

(2) Connecting (x m + 5x t ) withm' m (xf, tf)

If ¢ is small enough, then this three impulse trajectory will represent

an improvement. In all probability the three impulse trajectory is not

an optimum. For instance, the plot of primer magnitude vs time may

look as shown in Figure 1Z. In this event, after the _ and H before

and after the impulses are calculated, the following corrections are

made as given by Equation (17):

dXm = - ¢ (Am+ -'A j)

dt : - ¢ (H + - H')
m

Again two Lambert problems are calculated and the process repeated

until

IH+-H-I<_

+ -I <

where _ and _ are preassigned tolerances.

If at any point in the iteration, the primer magnitude becomes

greater than 1.0 at some point, then an additional impulse is added.

From that point on, three Lambert problems must be solved at each

iteration. The interior impulses are then moved in the same manner

as above. In principle, there is no limit to the number of impulses

which can be handled by this formulation.
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This technique, which is actually a gradient computation, exhibits

the properties of first order techniques in general: guaranteed improve-

ment on each iteration but convergence slowing as the minimum is ap-

proached.

The method is presently being programmed by the ASMAR group at

Princeton.
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SUblHARY

The following principle is exploited to obtain five linearly independent

solutions of the variational equations for Keplerian motion. The principle:

If a system of differential equations is invariant under a continuous and

differentiable group of transformations, it is possible in general, by

differentiations only, to write down a number of linearly independent

solutions of the variational equations equal to the number of independent

parameters of the group. In the Keplerian case there is, however, a removable

singularity occurring when the motion is circular.

A sixth solution of the variational equations is given by differentiation

with respect to the eccentricity e, or rather with respect to cos-le in

the elliptic case and with respect to cosh'le in the hyperbolic case. A

more complicated function of e can be used in the parabolic case, a parabola

being thought of as the limit of a family of non parabolic conics.

Numerous formulas and identities are written out explicitly for

manipulations in the elliptic case. A variation of the Lagrange method for

integrating non-homogeneous linear differential equations, especially adapted

for systems of second order, is developed and applied to the elliptic case of

Keplerian motion.
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Finally it is shown }low the Keplerian differential equations are invariant

under a group of transformations which, in general, change the eccentricity

provided that one allows the independent variable to undergo a differential

transformation.

INTROUUCTION

The purpose of this paper is to collect in as explicit a form as possible

the formulas necessary for handling the perturbation _f Keplerian motion in

rectangular coordinates. The emphasis is on elliptic motion although brief

mention is also made of both hyperbolic and parabolic motion.

The proposed method is one of successive approximations based on the
repeated integration (by quadratures) of a series of non-homogeneous variation-

al equations. It is more explicit and automatic than the Brouwer method (Cf.

Brouwer and Clemence, Hethods of Celestial Hechanics, Academic Press 1961,

pages 398 to 414), but in other respects is much the same thing. The Brouwer

method itself contains little originality, since, for example, }*is method of

integrating the non-homogeneous variational equations is due in principle to

Lagrange. 'I_e merits of the present paper are therefore more in the realm of

explicitness and exposition than of originality, although it contains a number

of formulas and theorems that we have not found elsewhere.

The method of Lagmnge is based on a prior knowledge of a complete set of

solutions of the homogeneous variational equations. The method of finding

these is based on a _roup theoretical principle which has contributed to the

title of the paper and which is explained as follows:

Consider a system of differential equations of the form

_1) x* = f(t, x) ,

where x and f are n-vectors, t is the independent variable, f is of
class C , and x* represents either the first or the second derivative of x

with respect to t (or, for that matter, the result of any linear homogeneous

differential operator with constant coefficients acting on x). The homogeneous

variational system based on a given solution x(t) is, by definition, the

system.

_* = A(t)£ ,

where A(t) is an n x n-matrix, namely the jacobian matrix of the components

of f with respect to the components of x, with x replaced by x(t). Now,

if x(t) can be imbedded in a one parameter family of solutions, say x(t, p),

in such wise that xCt, po ) • xCt), it is both well known and obvious that a

solution of the variational equations is given by _ • (_x/_p) with p set

equal to PO' Group theory is of value in finding a way to imbed the given
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solution in a family of solutions depending on one or more parameters.

Suppose that (I) is invariant under a group of transformations whose

equations are of the form

x' = hCt, x, p), t' • P(t, x, p) .

Assume that PO is the parameter value corresponding to the identity, so that

h(t, x, p0 ) -- x and P(t, x, po ) = t. Then any fixed solution of (1), gives

rise to a solution x(t, p) such that

x(PCt, x(t), p), p) - h(t, x(t), p}

a formula which will lead to an explicit expression for x(t', p) provided

that the equation t' • P(t, x(t), p) can be solved for t in terms of t'

and p. In any case, it is clear from the above identity (b Z setting p = po )

that x(t, po ) - x(t). Several very simple examples of the utility of these

considerations are given in the next Section in connection with the variationa

equations of Keplerian motion.

I. SOLUTIONS OF _{E VARIATIONAL EQUATIONS

The equations for Keplerian motion, with proper choice of the units, may

be written in the form

d2x x

dt 2 [x2÷y2÷z213/2

d2y • .

dr2 [x2÷y2÷ z 2 ] 3/2

d2z z

dt 2 [x2÷y2.z215/2

The equations of

equations, say,

variation based on a given solution of these Keplerian
X - ¢(t), y - _(t), z - _(t), take the form

d 2 & (2¢2-_2-J){ ÷ 3¢_n * 5¢wC

dt 2 [¢2+_2.J]5/2
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2 2 2

dt2 [¢2._2 ÷ 215/2

dt 2 [,2,_2÷ 215/2

We propose, using the group-theoretical principle exDIained above to find a

complete set of six solutions of the variational equations based on any

solution of a one parameter family of solutions of the Keplerian equations, say

x = ,(x, t), y - ,(x, t), z = _(x, t) ,

where the parameter X is assumed to be independent of the group parameters.

_le six solutions are exhibited as the six columns in the following 3 x
matrix

W* = (3/2)t ; * -_ 0 ¢ *X

(3/2)t w _ _ -_ O _X

where the dots denote differentiation with respect to t.

The solution in the first column comes from what we shall call the scale

group. Namely the Kevlerian equations are invariant under the group of trans-

formations x' - p'Ix, y.. p-ly, z' - p'iz, t' = p'S/2t in which the

identity occurs when p - i. Thus a solution of the Keplerian equations is

x - p #(X, p-3/2t), Z " P _(X, P'3/2t), z - p _(_, p'3/2t). Differentiating

with respect to p and then setting p - i, we get the elements in the first

¢olurm_ of the matrix W*.

q11e second column comes from the autonomous group, the equations for which

are x' = x, y' - y, z' = z, t' - t÷p, Thus a solution of the Keplerian

equations is x • ¢(_, t+p), y = _(X, t*p), z = _(_, t*p). Differentiating

with respect to p and then setting p • 0 (which corresponds to the

identity of the present group), we get the elements in the second column of Wt

The third, fourth, and fifth columns come from the rotation groups. For

instance the Keplerian equations are invariant under the group x' - x,

y' = y cOS p - z sin p, z' = y sin p * Z COS p) t' = t) that is the group

of rotations about the x-axis. Thus a solution of the Keplerian equations is
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x - @, y = _ cos p - _sin p, z = _ sin p ÷ u cos p. Differentiating with

respect to p and setting p - O, we get the third column of W*. The

fourth and fifth columns are obtained in a similar way by consideration of

rotation groups about the Z- and z-axes.

Finall Z the sixth colu_m is certainly a solution of the variational

equations because it consists merely of the derivatives of ¢) _, and

with respect to the parameter A.

It is known that Keplerian motion always takes place in a plane, tience

there is no essential loss of generality in choosing the coordinate system in

such a way that the given Keplerian motion takes place in the xy-plane. This

amvunts to taking w 5 O; thus greatly simplifying the matrix W* by

annihilating five of its elements (in addition to the three elements which

are already zerol. Furthermore) it is obvious) both from the cnlu_ms of W*

and from the variational equations themselves) that with _ _ O, the

variational system splits into two systems one involving only _ and n and

the other involving only _. The second of these systems is relatively trivia_

and hence from this point on we confine most of our attention to the first of

these systems) namely the system

d2._._ = (2¢2-02)_ * 30_n

dr2 (¢2. 2)5/2

(2)

d2n 3¢_ ÷ (2_2-¢2)n

dt 2 (_2÷_2)S/2

where ¢ and _ satisfy the two dimensional Keplerian equations)

) )2÷213/2(_2÷ 2)3/2 (¢

The most general elliptic case can be obtained (by the operation of a

scale transformation) a rotation) and a translation of t) from the following

one-parameter family of solutions:

- - cos X ÷ COS 8

(4)
- sin I sin 0

where 8 is to be regarded as a function of t through the Kepler equation

(S) t = 0 - cos I sin O.

An elementary calculation shows that (3) is satisfied by (41 and (S I . The
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quantity 0 is known as the eccentric anomaly. The eccentricity of the orbit

is cos _, at least, if 0 < _ _ _/2.

Similarly the hyperbolic case can be handled by taking

¢ = - cosh _ ÷ cosh 8

• sinh I sinh 0

where O is defined as a function of t by the equation

t = cosh _ sinh 8 - e.

The most general parabolic case can be treated by taking

i
_ (i - o 2)

where 8 is defined as a function of t by means of the equation

I 1
t - y (e - _ o3)

The parabolic case differs from the other two, because all parabolas are
obtainable from this one standard parabola by the operat-q-_n of the three

groups. There is no parameter _, independent of the _roup parameters,
enabling us to write the last column of the matrix W*. This situation can be

rectified by finding a family of conics consisting of ellipses and/%r hyper-

bolas which, as the parameter _ of the family tends to a certain valuej say,
O, converges to our standard parabola. Such a family of ellipses converging

to our parabola as _ _ () is the following:

¢ = - cot _ csc _ * csc 2 _ cos(O sin _)

" CSC t sin(O sin _)

t = e csc 2 _ - cot i csc 2 X sin(O sin _) .

It is not within the scope of this paper to discuss any further either the

parabolic or hyperbolic orbits.

II. ,HISCELLAN£OUS FOPJIULAS FOR ELLIPTIC MOTION

We restrict most of our attention to the elliptic case. Since we are
also restricting attention to the planar case, the equations of variation will

have only four linearly independent solutions. They are exhibited as the four
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columns in the following 2 × 4-matrix,

(3/2_t G G _ %j

This matrix is, of course, derivable from the matrix W* by omitting the last

row and the third and fourth columns. In writing down the explicit expressions

for these solutions, it must be remembered that O is regarded as a function

of both t and A. We readily find from (5) that

(7) ?._e = 1
at 1 - cos k cos e

and

(8) a__e - sin k sin 6
ak 1 - cos I coz e

Thus, we find from (4) that

- sin e
(9) _t, - - sin 0(_e/at)= z - cos x cos e

(i0)

(11)

sin COS 8
_(t) - ÷ sin I cos 8 (as/_t) -

I - cos k cos e

Ck(t) = sin k - sin e (ae/ak) = sin i ÷
sin k sin 2 e

1 - cos k cos 8

(12) _k(t) = cos k sin e ÷ sin k cos 8 (ae/a/)

sin2k cos 0 sin 8
m COS _ sin e -

1 - cos k cos B

These formulas are sufficient to enable us to write down at once all the

elements of W. It will also be necessary for us to have W, the derivative

of W with respect to t. For this purpose we record the followins formulas

obtained by differentiating folnnulas (9)-(i0) with respect to t.

(13) _(t) = COS k - COS B

(I - cos k cos e) 3
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(14) _(t) - - sin _ sin 8

(I - cos _ cos O) 3

Before differentiating ¢_ and ¢_ it is convenient first to observe

that they may also be expressed in the forms

¢_(t) = sin _ - _(t) _(t)

_(t) = cos I sin 0 - _(t) _(t)

(iS)

(le)

llence

(17)

To find ix(t )

$_(t)- - _(t)_(t) - _(t)_(t) .

first note from (4) %hat

(18) 42 ÷ 2 _ ( 1 - cos _ cos O) 2

Differentiating this, we get

¢_ ÷ _ • (I - cos I cos O)(cos_ sin B)(BS/Bt) - cos X sin 8

So (16) may be written

(19)

llence

(20)

The and _ may always be eliminated with the help of (3).

Some other formulas worth noting and easily derivable from the preceding

are the following

(21) ¢(t)_(t) ÷ ¢(t)¢l(t ) - ¢(t) sin

(22) *(t)_(t) - ¢(t)¢Ct) = sin

2 (_2 • _2) . 1 .
(23) ( 2 ÷ 42)1/2
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If we write the variational system (2) as a system of four linear

differential equations of the first order

d_

dn 0 _* 0n ÷0 _ ÷ 1 _
dt

A C¢.D..o[.o_-- =
dt

where A = 2¢2 . _2 B - + C - 3¢_

(¢2 • ¢2)5/2 ' (¢2 ÷ ¢2)5/2

it is seen at once that the trace of the matrix of coefficients on the right

i_ zero, Hence, by a known theorem on linear differential oquations_ we knew

that the determinant of the matrix /W I is a constant. It can therefore be

l
evaluated in a simple manner by evaluating it at t = O. From the above

formulas it is easy to write down the following matrix.

and D - 42¢2 " ¢2)

(¢2 ÷ ¢2)5/2 '

(24)

Evidently

\_.:(o)/

I?']
w(o)]

I - cos

0

0

l.sin _ .

g_i-:_-fj

0 0 sin

sin k
1 - cos _ 0

1 - cosl

1 sin
0

" _ I _ COS A_-COS

- 1
0 0

i- cos

J sin

i - cos _ sin I _'_'_o_ 1 - cos

m

i sin I . -I - i - sin

- 2-d,_) _ (l.cosX) 2

• [-(1/2)(1-COSk)][-cos_(1-cos_) "1] • * 2 -1 COS t.
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_is shows that our four solutions are not linearly independent if )` = _/2.

In fact this becomes obvious an_ay; for, with )` = _/2, 0 = t, ¢(t) = cos t,
_(t) - sin t, #(t) = - _(t), _(t) • _(t), so that the second and third

colu_s of W are identical. The case )` = n/2 is the case of zero

eccentricity, corresponding to circular motion. The singularity occurring at

)` • _/2 is, however, easily removable, in accordance with the following

theorem.

_eorem i. _e variational equations admit the solution

_._ _+
cos k ' =co-_-_

and this solution has a removable singularity at k • _/2.

Proof. The first statement is _ obvious consequence of the fact that the

(-_,n) of the theorem is a linear combination of the second and third columns

of the matrix W of (6).

As for the second statement, we find by an elementa_ calculation based

on (4), (9), and (10) that

_._ 1 - sin e ÷ sin)` sine]
• cos k • co'--s)` [I cos)` cose

-sine ÷ sink sine - sink cosk sine rose

(l - cos), cose)cos k

- sin 0 I - sink sink sin0 cose

• (i - cosk cose)(_ ) " iT---cosk cose_

cos k

l sink cose
r (- cosk cos@)]

cos k Ll - cosk cose

• sin)` rose - rose ÷ cosk ÷ rosa cos2e - cos2k rose

(I - cosk cose)cosk

e 1 - sink -1 + cos2e - COSX
= " (I . coscos)c̀ose)( co"_6"{-'__) + ( 1 - cosk cosoC°Se) .
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l-sinl cos

Now cos _ _ _ 0

limit as _ _ v/2, we have

as _ _ _/2. We also have lience in the

1

= - sin t cos t - - _ sin 2t

3 1
n = 1 * cos 2 t = _ ÷ _ cos 2t .

It is readily verified that these equations satisfy the variational

equations when ¢ = cos t and _ - sin t. They afford a solution which may

be used to replace either the second or third column of W to preserve a

complete set of linearly independent solutions in the case A • _/2.

The inverse of the matrix in (24) is important for future purposes. It

was calculated in the usual routine way, and we record the result here.

l.l.
Lw(o)J

(l-cosL) 2

0 0

i

2sin_

l-cos_

0 tan _ r/_l.cos_,2 0
cos

- 1
0 - tan _ 0

(l-cos_)cos_

-sin

(l-cosk) 2

0 0 -2

Ill. APPLICATION OF NON-HOHOGENEOUS LINEAR EQUATIONS

TO _IE PERTURBATION OF ELLIPTIC _IOTION

Perturbation of Keplerian elliptic motion generally requires the

solution of a non-linear system, which, with suitable choice of coordinateS,

may be put in the form of the following three equations.

(26) --d2_ . (2¢2 . 2)_ ÷ 3#_n • f

dt 2 [¢2 ÷ 2]5/2
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d2n 3¢*C ÷ (2* 2 - ¢2)q
(27) --= + g

dt 2 [_2 . ,215/2

(28)
d2¢ .

* h

dt [¢2 . ,2]3/2

in which the non-linear|ties in _, n, and ¢ occur only in f, g, and h

and are small compared to the linear terms. Solutions are required to satisfy

given initial conditions or more complicated boundary conditions. A useful

method is that of successive approximations in which an approximate solution

is inserted for _, n, ¢ in f, g, h, which accordingly are tem?orarily

regarded as known functions of t. We then are apt to get a better approxima-

tion by integrating the resultin£ non-homogeneous linear system, and then the

process is repeated. The process, when infinitely repeated, converges to an

exact solution under suitable conditions. In this paper, however, we are not

concerned with convergence questions, but rather with efficient methods for

solving the non-homogeneous linear system consisting of (26), (27), and (28)

when f, g, and h are regarded as known functions of t.

Notice that (28) can he solved independently of (26) and (27). Indeed

it admits the general solution

t

(29) _ - a¢Ct) ÷ b*(t) • csc X f [*(t)_(s) - ¢(t)_Cs)]hCs)ds ,

O

where a and b are constants of integration. The reader may verify this

statement a posterior| with the help of (3) and (22).

We wish to get a similar result for (20) and (27), which are not

decoupled. In the next section we develop a general theory of non-homogeneous

linear systems consisting of n second order differential equations. %Oxen

n • I, this theory leads to the trivial result (29). _len n = 2, it yie_s

the not so trivial analogous result for the system consisting of (26) and (2_.

IV. A _DDIFICATION OF LACRANCL'S TIIEORY
OF VARIATION OF PARA.\IETEI_.S

We wish to develop here a modification of the formula of Lagrange for

solving a non-homogeneous system of linear differential equations in terms of

a complete set of solutions of the corresponding homogeneous system. This

formula is commonly referred to as the "Lagrange variation of parameters"

formula. We wish to present a version which can be applied directly to a

system of n equations of the second order in n unknowns without the

necessity of rewriting the system as one of 2n equations of the first order
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in 2n unknowns. The system of interest in our irmediate applications is of
the form

{30)
d2x
---5" " A(t)x ÷ f(t)
dt"

where x is an n-vector whose components are the n unknown functions,

ACt) is an n x n-matrix whose elements are known continuous functions of the

independent variable t, and f is an n=vector whose components are known

continuous functions of t° It became evident however that the more general

equation (35) below could be treated equally well. The n × n-matrix BCt)

will be assumed to be of class C'.

Theorem _._ Suppose that 0(t, s) is an n x n-matrix whose elements are

funct--'_of class C" of the two variables t and s. Suppose furthermore

that

0Ct, s) = ACt)OCt, s) ÷ BCt)O(t, s) ,

0Cs, s) = 0

O(s, s) - I, the n x n-identity matrix,

t

xCt) = /

t o

_(t, s)fCs)ds .

(31)

C32)

C33)

and let

{34)

Then

(35) _Ct) = ACt)xCt) ÷ BCt)_Ct) • fCt)

(36) x(t o) = o

(37) X(to) • O )

where the dot on 0 represents differentiation with respect to its first

argument and the dot on x(t) denotes differentiation with respect to t.

Proof. Evidently (36) follows at once from (34). Differentiating (34)

we have

t

xCt) = f _(t, s) fCs)ds ÷ OCt, t)f(t).

t o

Because of (32) this reduces to
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t

(383 _(t3 " f 6(t, s)fCs)ds .

t o

and then 437) is seen to hold, Now differentiating (38), we get

t

x4t3 = / O4t, s)f(s)ds * O(t, t)f(t) •

to

Hence from (31) and (33), we get

t

x(t) = _ [A(t)O4t, s) " B(t39(t, s)]f(s)ds • f(t3 •

t o

This can also be written

t t

xCt3 = A(t) / OCt, s)f(s)ds ÷ BCt) / 9(t, s)f(s)ds + fCt).

to t o

Hence from 434) and 438) we see that 435) must hold,

The existence and uniqueness of the matrix oct, s)p with the properties

described in the hypothesis of the above tbeoremj are self evident from the

existbncep tmiquen_ss, and continuity theorems for linear differential

equations. It may be calculated from any n x 2n-matrix solution X of the

equation

X(t3 - ACt)X(t) * BCt)x(t) ,439)

provided that

 .t(i),o
Since the columns of O(t, s3 are solutions of x = A(t)x ÷ B(t)x,

they must be linear combinations o£ the 2n columns of X(t)p with

coefficients which are functions of s. This amounts to saying that there

exists an n × 2n-matrix Y(s)j such that

(413 9(tj s) = X(t)Y'(s) 4Y' • transpose of Y3 •

Y(s) is now determined by 432) and 4333_ which may also be written

(423 X(t)Y' (t) • 0

443) xct)Y'(t) • I ,
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which last two equations, because of (40), are just sufficient for the
determination of Y.

Theorem 3. The matrix Y(t) described above satisfies the system

(44) YCt) - (A'ct) - B'Ct))YCt) - B'Ct)_Ct) .

Proof. Differentiating C42). we obtain

(4S) _Y' * X_' - 0

Hence from (43), we have

(46) (1) _Y, - I and (ii) x_, - - I .

Differentiating (46i) and using (39), we have

(47) [AX • Bi]Y' ÷ i#' - 0 .

Since XY' - 0 and XY' - I, we find from (47) that

(48) i_' -- B .

Differentiating this last relation and again using (59), we have

(49) [AX ÷ 81]_' • _Y' - - A

But. since by (46) X#' • - I and by (48) X#' - - B, we find that (49)

becomes - A - B2 ÷ XY' • - _ so that

(so) i_' - A- B2 - A

Hultiplying (46i) on the right by A - A we have

(51) iY'(R - B) - A - B ,

while from (48) we have

(S2) i_'B - - Bz .

Subtracting (51) from (50) and adding (52) we get

(53) _[Y' - Y'(A - B) ÷ _'B] • 0

Differentiating (46ii), we have _#' ÷ XY' - O, so that it follows

from (48) that

(S4) X_' l B .
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We multiply (42) on the right by (A - B) thus obtaining

(5S) XY'(A - B) - 0.

Using, once again, (46ii), multiplying on the right by B, we see that

(s6) X_'B -- B .

Adding (54) and (56) and subtracting (55), we obtain

(S7) X[_' - Y'CA - B) • _'B] " 0 .

It follows from (40), ($3)j and (57) that

Y' - Y'(A - B) ÷ _'B - 0 ,

|fence, taking the transpose, Y - (A' - B')Y ÷ B'_ - 0, which is obviously

equivalent to (44), as we wished to prove.

The system (35) is said to be self-adjoint i£

(58) At(t) . _i . A(t) and B'(t) = -BCt) .

In tt_e self adjoint case Y(t) and X(t) satisfy the same differential

system, namely (39).

Theorem 4. Y(t) satisfies the initial conditions

X(0)Y'(0) - 0 X(0)_'(0)- - I

(sg)
_(o)Y,(O)- z _(o)_,(o)• - _(o) ,

and, since (40) holds, Y(t) is uniquely deteTmined by (59) and (44),

Proof. We get (59) from (42), (46), and (48), by setting t • 0. Because

(40) with t - O, the initial values of Y and Y are uniquely

determined hy (S9), and Theorem 4 follows from existence and uniqueness

theorems for differential equations.

Theorem S. Let L(t) - and J : where B 0 = B(0).

--
the system is self adjoint, Y(t) may be found from the formula

" (Lo'I) ,(60) Y(t) : X(t) L0 1 j, , L 0 • t,(O).

and

Then) if
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(61) o(t, s) = x(t) Lo 1 j(Lo 1), x(s)' .

Proof. Let, H = [_J; so that II' = (Y', _'), li, l, and ,I arc all

LU

matrices. Conditions (5'3) may be written in tile abbreviated form

2n × 2n-

(62) LOit' 0 = J .

where the subscript 0 means that the matrix in question is evaluated for

t = O. Since the system is self-adjoint, we see from (44) and (58) that

_(t) = A(t)Y(t) + B(t)Y(t). From (39) it rollins that the columns of Y

must be linear combinations of the colurms of X. In other words there exists

a 2n x 2n-matrix q of constants such that

(65) Y(t) = ×(t)(_

and hence Y(t) = X(t)(, _. The last two written equations may be written more

briefly as It(T) = L(t)Q. In particular, on setting t = O, we have

H0 = LOQ.

LO -1Therefore q = HO, Inserting this into (63), we find that

Y(t) = X(t)L0 "1 lto, while from (62) we have 11,0 = LO 1 j. tlence

H0 = J'(L0"I) ' On inserting this expression for }l0 in the last formula

for Y(t), we see that (60) has been proved. And (61) now follows from (60)
and (41).

In order to apply Theorem 5 to the system (30) j we take B(t) - 0. so

that the condition (58) for self adjointness reduces to the requirement that

A(t) be symmetric. It actually is symmetric not only in the case of the

variational equations of Keplerian motion but also in the case of the

variational equations connected with an}' solution of a conservative holonomic

dynamical system. In fact the matrix A in such a case is merely the

negative of the Hessian matrix of the potential function with the given

solution inserted, assuming that the coordinates are chosen in such a manner

that the kinetic energy is given in the form (1/2)(x • x).

V. TtIE O-NA'rRIX FOIl ELLIPTIC ,',lOTION

l_e now proceed to the consideration of the example alluded to at the end

of Section III, restricting attention to the elliptic case, The matrix X of

Section IV is now, in this special case, to be represented by the matrix Iq
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F qofSectionII. ,,encethematrixL_,)istheoatri_/"_'_1andtheinver,e
L_,_,,_j•"

L(O) "1 is accordingly the matrix of formula (25). Using this and various

other formulas of Section II, the four elements of the matrix O(t, s) _¢ere

calculated from the formula (61). _';e give only a brief outline of the tedkus

but straight forward calculation by mentioning only the following three inter-

mediate formulas. First, by carrying out the indicated matrix multil_lications,

we have

f 1
0 *2 0 0

L(O). I j(L(O).I) ' • .7 0 0 tank

0 0 -seckI
-tank seck 0 _m

Secondly by using the identities of Section II. it is not difficult to

establish the two following identities:

seck+ ¢ tank = - _ csc k

tank - _ seck= i ÷ ¢_ csc k,

which are useful to eliminate the singularity at k - ./2.

Let Oij(t , s) be the element in the itl__! row and jt__h column of

_(tj s). Then ce present our final results in the form:

OllCt,s).3(s-t)_Ct)_Cs)*2[,(t)_(s)-_(t),(s)]-[_(t)_(t),k(s)-_(s)_(s)Ik(t)]csc k

e21ct,s) - 3(s-t)_(t)_(s) + 2[_(t)_(s) - _(t)_(s)]

* [¢Ct)_Ct)_kCs) + _(s)_Cs)_k(t) ] csc k + _k(s)

O12(t,s) - 3(s-t);(t)_(s) + 2[¢(t)_(s) - _(t)_(s)]

- [_(t)_(t)_k(s) + ¢_s)_(s)_k(t) ] csc k - tk(t)

124



PERTURBATION OF KEPLERIAN MOTION

e22(t.s) = 3Cs-t);Ct);Cs) + 2[_(t);Cs) - ;(t)_Cs)]

• [,Ct)_Ct),xCs) - ,(s)_Cs),xCt)] csc x + [_xCs) - ,_(t)] .

VI. ECCENTRICITY OI&N(;ING TR&qSFORHATIONS

In Section I we used the fact that the Keplerian differential equations

were invariant under the scale, autonomous, and rotation transformation groups.

These make it possible to pass from any trajectory to any other trajectory
with the same eccentricity. The question naturally arises as to whether the

equations are also invariant under a transformation group enabling a passage

from any trajectory to another trajectory with different eccentricity. The

answer appears to be in the affirmative provided that we allow a differential

transformation on the time t instead of the simple transformation of the
form t' = P(t, x) as indicated in the introduction. This proviso causes

difficulty in the use of such transformations, but nevertheless we present

the theory in the hope that an application for it may be found at some future

time.

Because of the rotation groups it is obviously permissible to confine

attention to the planar problem, and indeed to orbits whose major axes lie

along the x-axis of coordinates. We thus find it sufficient to consider the

transformation T(a, b), depending on the parameters a and b, defined

by the equations,

• x / a 2 * b 2 * a / x 2 ÷ y2

(64)

n • b y b # 0 .

the

with

(65)

It is also possible to pass from any point (x, O)

point (_j 0), with _ # 0 and sgn ¢ = sgn x.

These transformations are easily seen to form a commutative group, since

T(0, i) is the identity transformation, and since T(a, b) "I = T(- ab'2,b-l),

and T(a, b) T(a, 8) T(a /a" 82 *= * a + b 2 , bB)./a 2

These transformations all leave the origin invariant. 'Ihe F also leave

x-axis invariant. But, it is possible to pass from any point (x_ y)

y # 0 to an), other point (_, n) with n # O. We have only to take

a _ /x2 * 2 . x /_2 * 2
= b =_

2 ' y
Y

with x # 0 to any other
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Since it is proved easily from (64) that

¢2 " " "* n" = /(a 2 ÷ b')(x _ + y2) + ax(66) ¢

1

it is seen (with a ¢ 0) that the ellipse with eccentricity lal(a" ÷ b2)" 7,

focus at the origin, and directrix x a -1= , is carried by the transformation

into the unit circle ÷ n _ = 1. It can be seen further, restrictinp.

attention to conics with focus at the origin and directrices parallel to the

-1
)'-axis, that a conic with eccentricity" e is carried over by T(a, b) into

a conic with eccentricity

a 2e / *b_ * a

/ a 2 *b _- + ae

It follows that ellipses are carried into ellipses, parabolas into par;ibolas,

and ]vperbolas into hy,?erbolas. Except in the case of the ,_arabola the

eccentricity is always chnnped w any transformation of the crou*_ for which

a # 0. Any ellipse can be cnrried into any other elli?se, an)" parabola into

an), other parabola, and an}" hyperbola into any' other hyperbola. That the

transforrlation carries any conic with focus at the ori,oin (but with directrix

not necessarily parallel to the y-axis) into another conic with focus at the

ori_.in is more difficult to see; but it is one of the conclusions that can be

draw_ from the followinp, discussion of the Keplerian differential equations.

%_e now examine the effect of the transformation (b4), where a and I.

are regarded as constants while x - x(t) and y = y(t) are functions

-3
satisfying the Keplerian equations x = - x r "3, y = - ), r , where

2
r 2 = x 2 * y . Thus _ and n are also to be regarded as functions of t.

h_e also introduce 0" " ÷ n _ and another wlriable o defined uniquely by

the requirements that do/dr - p/r and that o - 0 when t = O. Thus

is a function of t, but we can also solve for t in terms of o and use

the latter for the independent variable. In this way ( and n can be

regarded as functions of o and we write K' - d_/do = (dK/dt)(r/o), with

similar formulas for n. We wish to find differential equations (sit, liar to

the geplerian differential equations) to be satisfied by _,(o) and n(o).

It is known that x,_ - _v = c is independent of t (and hence also of
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a). This is also true of c_ - x r "1 = A and cx * y r "1 = B.

A straight fomvard calculation shows that the quantity Y " {n' . _'n is

also independent of t {and hence of a). In fact it shows that y = bc.

Still further, if we introduce tile quantities, Q = (a 2 * b2) 1/2 - aA,

H - bB, and N - A(a 2 * b2) I/2, all of which are independent of t and o,

our straight fom,'ard calculation shows that yg' ÷ Qqo -I = H and

yq' - Q_o -I = N. ",lultiplying the first of these two equ,"*ions by q and the

second by _, we find after a subtraction that Y(_q' - _'n) = Q0 ÷ N_ - Hn.

2
llence y - Qo • N£ - _4n. It is also easy to prove that

y2(_,2 .,. q,2) = (H2 + N2) + 2Qp-I(NF.. Hn) ÷ Q2

" (H 2 ÷ N2) ÷ 2QO'IcY 2 - Qo) * Q2

= H2 ÷ N2 . Q2 ÷ 2Qy 2
o

'Vnus we have established the following two relations

_n' - C'n = bc

_i _ ,2) QO-I (bl2 * N 2
2(_'" ÷ n " ÷ - Q2)/(2y2j _ •

If we now differentiate these two equations with respect to o and solve for

the second derivatives _" and n", we find that _" _ - Q_o -3,

q" - - QBo "3. Since Q is a constant, these equations are already in

Keplerian form; so that it is clear that the point (_(o), n(o)) describes

an orbit which must be a conic section, and, if it is a non-degenerate conicj

one focus must be at the origin.

Nevertheless Q need not be unity. Hence in order to achieve the

invariance of the original equations x x r "3 y v r "3- - , = - , , we make

another modification of the independent variable. Let _ be defined in such

wise that dT/do = QI/2 with T z 0 when o = 0. Then using T as the
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°

• • -3independent variablej we find that d2¢/dT 2 - ¢o "3 and d2n/dx 2 - no ,

where the relation between r and t is evidently

d_ o Q1/2 0 [(a2 . b2)I/2 aA]l/2
_'7 "¥

Although A is a constant of the motion, it may change from one motion to
another, llence it has to be considered as an abbreviation for

(x_ - xy)y - x(x 2 • y2)-1/2

l_e conclude therefore that there exists a function U(x, y, x, y, a, b)

such that the transformation

¢ a x /a 2 ÷ b 2 * a /x 2 * y2

n •by

• •

d_/dt • U(x, y, x, y, a, b)

b ¢ 0

transforms the Keplerian differential system _ . . x(x 2 ÷ y2)-5/2

i; • " Y( x2 ÷ y2)=5/2 into tile Keplerian system,

d2_ ¢ d2n n

7"-?"

There is a question about the sign of the quantity Q; for, if it is

negative, our change in the time variable through dx/dc = Q1/2 would be

imaginary. We have not investigated this situation, except to note that Q

is necessarily positive when the motion (x(t), y(t)) is either elliptic or

parabolic. For it is well known that the constants A and B, introduced

above, are related to the eccentricity e through the equation

2 A2 82
e • * .

llence [A[ _ e _ 1 in either tile elliptic or parabolic case, and since we

must always take b _ 0, we see immediately that

Q = (a 2 ÷ b2) I/2 - aA • (I .
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SU_BIARY

A new proof of the Sundman inequality with refinements, and its utility in

the introduction of a monotonically increasing angular variable for the

Lagrangian inertial radius in the n-body problem. A discussion of the possib

amount of information derivable from these considerations by studying them in

the light of the integrable two-body problem.

INTRODUCTION

In this paper we give a proof of the well known Sundman inequality which

is far superior in generality, precision, and elegance to any which we have

hitherto seen. The additional terms to be introduced in order to turn the

inequality into an equality are explicitly exhibited in a reasonably simple

form. Thus, by including some or all of these terms, we achieve the superior

precision noted above. All these results are based on some simple theorems in

the field of classical vector analysis. In fact the essence of the Sundman

inequality appears in a more general setting th_l that of the n-body problem.

The last sentence needs to be emphasized despite the fact that the only

applications of the inequality have been to the theory of the n-body problem,

and despite also the fact that in this very paper we have ventured (throuEh the

Sundman inequality) a further modest contribution to this theory. Namely we

have shown how to introduce a monotonically increasing "angular" variable 0(t)

with certain interesting properties. Upon setting X = R cos O and

Y - R sin 0 s where R is the Lagrangian inertial radius, we investigate

differential equations to be satisfied b: X and Y. These equations are

shown to contain enough information essentially to solve the problem completely

when n = 2. Naturally the situation for n > 2 is very different, since the

more complicated cases need much more information for their complete solution,

But it may be reasonably hoped that the same information which selves the two-

body problem completely may at least yield some interesting qualitative results

for the n-body problem.
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I. PP,.ELIHINARY 'II!EOI_.?qS IN VI:.CT(}R ANALYSIS

In the sequel the inner or scalar product of two 3-vectors a and b is

denoted either by (ab), without a dot, or by a • b, without the parenthes_s.

The outer or vector product will be denoted by Ca x b).

lheorem 1. Let a, b, c, d be any four vector s in three diFensional space.

Then the scalar li(a, b, c, d) = (aa)(dd) - 2(ac)(bd) - 2(ab)(cd) ÷ 2(ad)(bc) *

(bb){cc) is not negative.

Proof. The theorem is certainly true if d = O; for then g - (bb)(cc) _ 0.

ltence we may fix attention on the case d _ 0. Then) regarding b, c, and d

as constant vectors, we seek to minimize W by varying a. Evidently the

gradient of W with respect to the components of a is the vector

_W/aa • 2a{dd) - 2c(bd) - 2b(cd) * 2d(bc) ,

while the hessian matrix of l_ with respect to the components of a is the
positive definite matrix, 2(dd)I, where I is the 3x3 identity matrix. It

follows that _ assumes its minimum value when a is such that it makes the

gradiant of W vanish, namely, when

-1
a = (dd) [b(cd) • c(bd) - d(bc)] .

If we substitute this expression for a in the formula for I% we find by a

routine calculation that the minimum value of If turns out to be

(dd) -1

(bb) (be) (bd)

(cb) (cc) (cd)

(db) (de) (dd)

_'e have here the determinant of a certain type of symmetric matrix which is well

known to be positive if the vectors b, c, and d are linearly independent

and, otherwise, it is positive semi-definite. Cf. Hardy, Littlewood, and

Polya, Inequalities) Cambridge University Press {1934), p. 16. In either case,
the minimum value of the determinant (and hence of W) must be non-negative

and thus the theorem is proved.

Theorem 2. Let Ul, u2, ..., u n be n vectors in ordinary three dimensional

space and let Vl, v2, ..., v n be anott_er set of n vectors. Then the

following formula is identically satisfied
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n n n 2 n n I n

-(iEl(UiXVi))'(i=, (U.XV.))=_--I,j.IZ l_'(u.,u ,V V.)( Z (u.u.)( Z (V.V.)-( E [uivi) ) E I I i z. 1 j i' yi= 1 i I i=l i i i-l

where the !q function is defined by the for_mla of Theorem !.

Proof. Evidently the left member of the last formula may be written in the
form

n

Z [(uiui)(vjvj) - (uiv_(ujvj) - (u i x vi) • (uj x vj)l
i,j-l

By a known formula of vector analysis, we know that

(u i x vi) • {uj x vj) = {uiuj)(vivj) - {uivj)(viuj) ,

while a simple manipulation of the summation indices i and j shows that

n n
1 1

z _ _ - z [7 (uiui)f_vj)• _ (ujuj)(_vi)]i,j=l (uiui)(V-V') i,j=l

Hence the left member of our formula can be trans formed into

n I I

i,_=l[Y(UiU_(VjVj) - (uivi)(UjV j) - (uiuj)(ViVj) ÷ (uivj)(ujv i) + _(UjUj)(ViVi)]

which, by the formula for g, given in Theorem l, can be written

n
1

Wfui, uj vi, vj)
i,j=l

and this finishes the proof.

As a corollary, to Theorem 1 and 2, we obtain the inequality

n n n 2 n n

(1) (i2 (uiui))(i_l(ViVi)) _ ( Z (uivi)) ÷ ( Z (u i x vi) ) . ( Z (u i x vi) )1 i=l i=l i=l

no matter what the vectors Ul, ..., Un, Vl, ..., vn may be.

Theorem 3. q_e scalar W(a, b, c, d) of Theorem 1 vanishes whenever the

vectors c and d are proportional to the vectors a and b, in the sense

that there exists a scalar k such that b = ka and d = kc.
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The proof of this theorem is left to the reader since it is an almost

obvious consequence of the formula for h'(aj b, c, d).

II. TIlE SUNDMAN INEQUALITY

In the application to the n-body problem with the n masses ml) m2, ...,

mn, we let the position of the mass mi at time t be determined relative to

a given coordinate frame by the position vector r i with components xi, yi,zi.

The velocity of m i is then ri with components xi' _i' zi' the dot

denoting differentiation with respect to t. The Lagrange inertial radius R

is defined by

n

(2) R 2 - E mi(riri) .
i=l

The kinetic energy T is given by

l n o •

(3) T - _ i_l mi(riri) '

_e angular momentum vector _ is evidently

o

(4) _ " i_l mi(ri x ri ) •

Also, by differentiating (2) we have

n °

(5) RR - Z mi(riri) .
i-i

If now we let u i mil/2r i and v i mil/2 "• • ri, we see that (2), (3), (4) and

(S) become

R2 n
• E {uiui)

i-i

n

2T ® E {vivi)
i-l

134



SUN DMAN INEQUALITY

n

, = z (u i _ vi)
i=l

n

R_- Z (uiv i)
i=l

Thus, substituting in our inequality (1), we obtain one form of the famous

Sundman inequality, namely.

(G) 2R2T & R2 _2 • (, . ,) ,

We may also write this in the form

(7) _2 • f2 . q = 2T

R2

where f = (, . ,)i/2 is the magnitude of the angular momentum and Q is a

positive scalar. Actually, by using the identity of Theorem 2 instead of the

inequalit Z (I), we easily derive the following explicit formula for Q

(8)

n
1

q -g _ _(ui, uj
i,j-l ' vi' vj)

n
i

2 i,j-l
%V(mil/2 ri, ri, rj)mj I/2 rj, mil/2 " mj I/2 " .

So far we have made no use of the equations of motion for the n-body

problem. The Sundman formulas (6) and (7), with Q defined by (8), hold for

any system of n masses moving around in space with arbitrary velocities. As

a consequence of the equations of motion, we know that we have ten first

integrals, from which it follows that

(9) f • constant

and that there exists a constant K (the negative of the energy constant) such
that

d2R 2
(i0) _÷ 2K • 2T .

dt 2

This last relation is one form of the well known Lagrange identity. On using

(I0) to eliminate the T in (7), we obtain
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(ll) _2 + 2RJi + 2K L f2R'2 .

which is the form of Sundman's inequality used in our previous report entitled

Rejection to Infinity in the Problem of Three Bodies when the Total Energy is

>legative.

III. AN _NGULAR VARIABLE FOR R

It is convenient to write (7) in the fom_

2

R 2

where p2 f2• ÷ Q _ f*. I_e then define a monotonically increasing function

O(t) by means of

t

(13) 0(t) - 00 * f p(s) k(sl'2ds
0

where 0 0 is an arbitrary constant, ltence It(t) 0(t) - p(t) R(t) "1
thatso

(12) becomes

(14) _2 R2 _2÷ - 2T

while, of course, we also have

(15)

Now let

( 1(, )

R 2 0 - p _ f _ 0

X(t) • R cos e

Y(t) - I_ sin 8

Then we easily find that

(17)

X2 • y2 . 1_2

• 2 '2 * R2 _2X ÷ Y . _2 - 2T

x_'- _Y. R2
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||ence

1 [_2 _2) . T and X Y X Y(18) _ + - = p •

From (10) and (12), we have

d2R 2
_2 p2 R-2+ = _- 211,

dt 2

where h = -K is the energy constant. Fro_ this we find that

d

d-T " " R

Integrating we get

"0 p2 1RR" - 2h R ÷ R" = c(t)

where

_ t

c(t) = RoR _ - 2hR 0 * p0 2 R0 1 * I 2R(s) -1 p(s) p(s)ds .
0

From (1S) we now obtain

_2 , R 2 _2 = c R "1 * 2h .

So from (17) we have

_2 )2 R-1÷ = c * 2h

Differentiating these last two equations we find that

2 R2 R 2

(19b) . y X ÷ X y = p .

In deriving (19a) we, of course, use the obvious fact that c= 2R "I p p. We

now solve (19) for _ and Y, using the fact, derived from (17) that
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(20)

In this manner we obtain tile pair of equations

-uX X pp • •

R3 R3 _ R _

y : -,-'__Y+ LP__+ _' _

whore 2

• " PO t

1 1 t,o'b'--'h% %"-"-]..r ° _dsu - yc- y " It(s) '

Thus, if p is small relative to R and R, then X and Y very nearly

satisfy the equations for Keplerian motion.

We now show that the information contained in (20), in the case of the two

body problem, is equivalent to the reduction of the latter to Keplerian motion.

Taking the origin at the center of gravity of the system, we have

(21) mlr 1 * m2r 2 = 0, ml_ 1 * m2r 2 - 0 @

Hence the vectors mI1/2 rl and m21/2 _2 are proportional to the vectors

mll/2 r 1 and m21/2 r 2. Ilence from ]heorem 3 and equation (8) we see that

which is a constant. Ilence equations (2) reduceQ - o; and therefore p = f,

to

uX

(22) _, . . __ y o -u__L
R 3 ' R 3

where u is the constant

u = + [Ro_o 2 - 2h R 0 ÷ f2 RO-I] .

So far, we know only that u is a constant along each motion; but it miRht

differ for different motions. We show now, however, that tile latter is not the

case. Indeed, we can show that u is a simple function of m 1 and m 2 only.
To this end we write

= R ÷ f2 R-2
u _ [_2 - 2hi ,
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dropping the subscript O, which is not important, since the right hand member

of the last written equation is almost obviously a const_t along each motion.

Now by (15) we have f R "I = p R"I = R 0, so that

R [_2 R2 _2 2h]

It now follows from (17) that u " R(T - h). Since h is the total energy of

the system, h - T must be the potential energy of the system, which is, of

-I

course, - mlm2P , where D is the distance between m I and m 2. It follows
that

-i

(23) _ - mlm 2 R O

By definition of R and by (21) we have

(24) R2 • m I ]rl]2 • m 2 Jr212= Irl]2 (ml/m2)(m I ÷ m2) .

Similarly

(2s) 0 - [rll ÷ r21 " [rll m2"I (m 1 ÷ m2) •

Hence, from (25), we have

/ s s\ 1/2

./mlm21

If we orient our coordinate frame of _ference so that the positive z-axis

has the di_ction of the angular momentum vector, the motion takes place in the

xy-plane and we obtain the equations

(26) _ - - (ml ÷3 m2)_ ' _ = " (ml ÷3 m2)n

P 0

for the relative motion of the two bodies, where _ and n are the coordinates

of m I (say) relative to m 2. The ratio of 0 s (62 . n2) I/2 to R is seen

i/2/(mlm2) i/2from (24) and (25) to be (m I ÷ m2) . By a discussion of the angular

momentum it may be shown that tan'l(_/_) - 0 is a constant; and it is also not

hard to prove that, if the axes are oriented so that this constant is zero, then

the ratio _ to X (and of n to Y ) m_t be a constant _d eeual te the

ratio of _ to R. It is theu easy to see that (22) and (26) are equivalent.
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SUb_RY

The intuitive aspects of approximate decoupling of an n-body problem as

exemplified in the solar system. Formalization of approximate decoupling in

terms of the limiting values of certain parameters contained in the equations.

Partial decoupling versus complete decoupling. Details in the approximate

decoupling of an n-body problem into a k-body problem (k < n) and an

(n-k+l)-body problem in the situation where k of the bodies are relatively

close to each other compared to the other mutual distances and where also the

k bodies have small masses compared to the other (n-k) bodies. The Hill

equations for the motion of the moon as a special case of partial decoupling

in the above situation with n = 3 and k = 2.

Theory of so-calledquasi-first integrals which appear in the partially

decoupled system and which are derived from first integrals of the unreducod

system. Examples in the reduced and restricted problems of three bodies.

A method for appraising the validity of an approximate decoupling (either

partial or complete) based on the use of Lipsehitz constants. The hyperbolic

cosine appraisal for comparing the solutions of two systems of second order

equations.

"Dmre is a problem in applying this appm_al to the n-body equations

because of the collision singularities. If these singularities are excluded by

restricting attention to a region in configuration space in which each mutual

distance between pairs of bodies is not less than a fixed positive number

assigned to the pair in question, the resulting region is not convex; and so

there is still a problem in the estimation of the Lipschitz constant in terms

of bounds for partial derivatives. This problem is solved for the al_propriate

functions occurring in the n-body problem by proving that in this special

case the non-convexity of the region may he ignored.
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INTRODUCTION

One of the remarkable features of an n-body problem, of the type afforded

by the solar system, is the ease with which the system can be approximately

decoupled. Thus the motions of the planets about the sun are usually treated

as perturbed Keplerian motions, as are also the motions of satellites about a

planet. This approximate decoupling is possible when some of the masses are

very small compared to others and/or when some of the mutual distances between

the bodies are very large compared to the other distances.

If we introduce parameters into the system in a suitable way, the ensemble

of the decoupled systems may be regarded as the limiting case of the original

n-body system when one or more of these parameters approach certain limiting

values. For instance, a three body problem in which one of the masses is vet-/

large compared with the other two is partially decoupled into one Keplerian

motion and one restricted (or reduced) problem of three bodies when one of the

smaller masses approaches zero; and it is corapletely decoupled into two

independent Keplerian motions when both of the two smaller masses approach zero.

_lis is the type of approximate deeo_ipling observed in planetary theory. Another

type of decoupling occurs in linear theo_' where the distance between the two

smaller bodies is small relative to their distances from the larflest mass.

Again we may take one of the parameters to be the smallest mass and we get the

same partial deeoupling as before, when this parameter tends to zero. But, for

the other parameter, we take something which tends to zero with the ratios of

the smallest distance to the two larger distances, and simultaneously modifies

the time scale. 1_ere are several ways of doing this; but, if it is done

properly, the three body problem will again be approximate|y decoupled into two

Keplerian motions, one for the motion of the intermediate mass (the earth, say)

about the largest mass (the sun) and the other for tile motion of the smallest

mass (the moon) about the intermediate mass (the earth). But the time intervals

for the validity of these apDroximations may be vastly different. Considering

only the situation where the two above Keplerian motions are elliptic, the

approximations may be reasonabl), valid in each case for approximately the same

number of periods, but the period associated with the smallest mass may.be but

a small fraction of the period associated with the intermediate mass.

In this paper we wish first to consider a method for the approximate

partial decoupling of the n-body problem into an (n-k*l)-body problem and a

modified k-body problem (k<n) when the k bodies are relatively close to
each other compared to the other mutual distances. We also assume that these

k bodies are small compared to the other n-k bodies. When n=3, k=2, this

modified k-body problem is the problem formulated by the Hill equations, at

least if the (n-k÷l)-body problem (i. e. in this case, the 2-body problem) is

given a circular solution. By introducing a second parameter and proceeding

again to a limiting case we may achieve a complete approximate decoupling.

Secondly we shall initiate a general theory of so-called quasl-first

integrals which arise, in the partially decoupled system, from the first
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integrals of the original system when the parameter takes on its limiting value,

say 0.

Thirdly, we give a general but rather crude method for estimating the error

consequent upon using the deceupled or partially decoupled systems in place of

the original system.

I. DECOUPLING OF THE n-BODY PROBLEM

I.i. Partial Decoupling

The original equations of motion are written as follows in terms of

position vectors q for the n-bodies (with masses ml, m2, ..., mn):

(i) mi qi " Uqi i - l, ..o, k

(2) us qa - Uqa a - k÷l .... , n

where the dots represent differentiations with respect to the time t,

the subscript

the relevant

where

q's in (I) and (2) indicate the gradient of U with respect to

q, and where U itself is defined by the following formulas

U=U ÷V+W

(3)

m.m.

U z

i<3

n k _ami

V- E E. _a=k÷l i I

J " lw ***w k

mam 8
W E _ 7T'---'-2-r

,% - _sla<8

8 = k÷l, ..., no

Setting _ • m I * m 2 ÷ ... ÷ mk, the center of gravity of these k bodies is

given by

k
-i

(4) qo • u j_l mjqj

Letting ri " qi " qo' ra • qa " qo' we see that rj - r i - qj - qi _
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ra " ri = qa " qi' r_ - r a = q_ - q .

valid when the q's are replaced by the r's. It is also clear that
k

mir i = Z mi(qi - qo ) • Z miq i - Z miq 0 = Z miq i - _q = 0 by (4).
i-i 0

k

(s) z m.r. = o .

i-l z 1
k

....... i ..

Lvidently mini = miqi " miqo = miqi " miu j_l mjqj

k
-I

ZU

• Uri " miu j=l rj

It is easy to see by direct calculation that

k n

(6) E U* • 0 and _ W • 0 .
£=i r£ Bmk*l r8

ttence the formulas for U , V, W remain

Hence

Hence

(7) m$_i u" . -i k
• * Vri mi_ _ Vri j-l rj

Similarly, we find that
k

(8) m _ - v * W - -I z v

a a r a ra mau j=l rj

The equations of the n-body problem are easily seen to be invariant under

a transformation which multiplies each distance by a parameter s provided that

each mass is correspondingly multiplied by S 3, llence, if rk.l, ..., r n are

large compared to rl, ..., rk, and if one ,vishes to exaggerate the comparative

largeness of the former to the .latterj it would appear desirable to multiply

each mass by $3 and each of the vectors rk.l, ..., rn by s, but leave

rl, ..., r k untouched. One then examines the effect of allowing s to

approach infinity. Carrying out these modifications on (8), and making use of

the formulas of (_) for V and W, we obtain
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k s6mim (ri - sr ) s6m mB(sr 8 - sra)

mas4r • Z + E

i:l Ir i- srl s B_ Isrs-srl 3
6

-I k nz s mnmB(sr B - r))

j-1 B=k.1 [rj - srBI 3

4
Dividing by s m and then letting s _ _, we obtain

.. n mBr 8

(9) r a - - _ ÷ Z mB(rS " ra) Z [3B_ IrB - r l3 _°k-i Ira

These are precisely the heliocentric equations of notion for n-k*l bodies,

namely the n-k bodies mk÷l, ..., m n referred to a hypothetical sun with mass

- m I ÷ ... + mk, placed at the center of gravity of the bodies m|, m2, ...,

m k. Equations (9) thus approximately describe the notion of the n-k bodies

mk÷l, ..., m n and the center of mass of the k bodies ml, ..., mk, while

neglecting [rl[ ..... [rk[ in comparison with Irk+l[ ..... [rnl ' but not

neglecting the total attraction of ml, ..., mk on the other n-k bodies.

If we also wish to neglect the masses ml, ..., m k in comparison with

mk÷l, ..., mn, we follow the procedure as above excep_ that we do not introduce

3
the factor s in connection with each of the k first masses, but only with

the remaining masses. We then find, on letting s _ _, that

(i0) r - Z mB(rB - re) _ m_r8

_ Ir_ - r J 3 B=k'l Irsl 3 '

which, of course, is the same as (9), except that the first term is omitted on

the right hand side.

We now investigate the behavior of equations (7) under these operations,

neglecting ml, ..., m k in comparison with mk÷l, ..., m n as well as

rl, ..., rk in comparison with rk÷l, ..., rn. The equations may be written

after the ith equation is divided by m i in the following manner:
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r. - E m)(rj - ri) • _ ma(r a . ri) . u" 1 kE nE m_ma(r a - r_)

1 j#i [rj - ri [3 a=k*l Ira - ri[3 j-1 a=k÷l [ra - rj[ 3

3

Hence multiplying r a by s (a - k÷l, ,.., n) and m by s and then
letting s _ _, we get a

m) - ÷r. = E (r_ r i)

j¢£ Irj - ri[3
(11)

3
n s ma(Sr a - r i) -i k n m.s3m (sr r.)

lirat 3 'lsraar°jl3'I
s_ a-k÷l [sr a - ri[ j-l a=k÷l -

In order to evaluate the limit s _ ®, we introduce a - I/s.

find that

s3ma(sra " ri) -1 k m)s3ma(sr a - ri)
- u Z

[sr a - ri 13 j=l [sr a - rj[ 3

We then

. a-I [ma(ra " °ri) - -I k m_ma(r a - ar_)]

Ira-ori 13 _' )_-l Ir a-orjl 3

The quantity in the bracket is now expanded in a power series in a. It is
k

obvious, in virtue of u = E mj, that the constant term is zero, while the
j=l

coefficient of a is readily computed to be

mar i 3mara(r a • ri)
#

3 [Sr Ir a

In arriving at this result we use (5). It follows that (11) may be written in

the form

- ri) • n mar.1 ÷ 3mara(ra " ri))
(123 _i • Z m_Cr,j Z (- _

j¢i ]rj - ri 13 a-k÷1 Iral Iral s

148



APPROXIMATE DECOUPLING IN THE n-BODY PROBLEM

1.2. The Hill Example

We now indicate the manner in which the }{ill equations are special cases of

equations (12). We thus assume n = 3, k = 2, so that k ÷ 1 • n- 3. We also

Testrict attention to the planar problem. Equation (i0) reduces to

- m3r 3

(13) _3 =

It313

since the only value that s and 8 are allowed to take on is 3. This is, of

course, just the system for Keplerian motion. Suppose we take m 3 = i and

consider the particular solution x 3 - cos t, Y3 = sin t. So IrSl • I.

Hence squations (121 become

m2(x2-xll

Xl • " " x I * 3 cos t (X I COS t + Yl sin t)
[(x2-xl )2 + (y2-Yl)2] 3/2

(141

m2(Y2"Y I)

Yl • " Yl + 3 sin t( x I cos t + Yl sin t)

[(x2-xl )2 ÷ (y2-Yl)2] 3/2

(IS)

_2 : ml(Xl-X2) - x2 + 3 cos t (x 2 cos t * y 2 sin t)

[(Xl-X2 )2 ÷ (yl-Y212] 3/2

Y2 ml(Yl-Y2)

" [(Xl.X2)2 ÷ (yl.Y2)213/2 - Y2 ÷ 3 sin t (x 2 cos t + Y2 sin t) .

From (5), we have in addition m x I ÷ m2x 2 - 0 and mly I
(15) and (141 are not independen_ of each other. Settlng ÷ m2Y2 = O;

x - X 1 - X 2

Y • Yl " Y2' we find on subtraction of (15) from (17) that

= -(ml÷m2)x

[x2÷y2]Sf 2 - x ÷ 3 cos t (x cos t ÷ y sin t)

(16)

• "(ml÷m2)Y

[x2,y213/2 - y ÷ 3 sin t (x cos t ÷ y sin t) .

so that

and
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Setting z = x + iy, we can write (16) in the more compact form

"(ml*m2)z ei t e -it )
(17) _ - _- z * 3 a(z .

-it
We introduce rotating coordinates at this stage by putting _ • z e ,

it ' 'z- _e , _• (E'iOe _t, i• (E'2i E- _)e_t, and Izi • I_I.
it

Substituting in (17) and suppressing a factor e , we get

Hence# setting

find that

so that

+ 2i £ ¢ = "(ml÷m2)¢- - ¢ + 3R(¢) .

C = _ + i n and separating real and pure imaginary parts, we

[_2 ÷ n213/2 ÷ 3_

÷ 2_ • "(ml ÷ m2)n

[&2 ÷ n213/2

which are llill's equations. They appear in the more standard form

x

- 2y • 3x (x2÷y2)3/2

(18)

(x2÷ 2)3/2

1/3 x 1/Sy.
if we take _ • (m I ÷ m2) and n = (m I ÷ m 2) The present x and

are, of course, different from the x and y of (16).

1.3. Complete Decoupling

In carrying out the complete decoupling we observe that, if the k bodies

are very close to each other compared to their distances from the other n-k

bodies, their attraction (per unit of mass) on each other is much greater than

on the other n-k bodies. This will cause greater relative accelerations of

the k bodies than of the others. In order to exaggerate this effect we
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introduce the small parameter k in such wise as to change the time scale as

well as to multiply rl, ..., rk and simultaneously to render those terms on

the right of (12) which involve the other r's to be very small compared with

the other terms. This is achieved by multiplying rl, ..., r k by k 2 and t

by X3j and leaving rk+l, ..., rn and the masses untouched. When (12) is

thus modified, we find that

• - n mar i 3mara(r a • ri)
k'4 _i k"4 X m_(_) ri) + k2 Z (- -- + ")

- a-k-1 Jr ls Irl s 'j_i [rj rll 3

First multiplying by k4 and then letting k _ 0 we get the complete

decoupling with (12) replaced by

m_ -
(19) _i • Z (r) r i) i • i, k.

j#i Irj - ri 15 .....

which are precisely the equations for the k-body problem.

Notice that the same type of reduction occurs if we take the Hill equations

(18) in rotatingcoordinates. If we have multiply x and y by k2 and t

by 13 these equations (17) take the modified form (after multiplying through

by _4)

x

" 2k3y = 3kOx " (x 2 ÷ y2)3/2

(x 2 ÷ y2)3/2

which reduce in the limit k _ 0 to the equations for Keplerian motion.

It does not matter in such approximations whether rotating or non-rotating

coordinates are used. Correspondingly the resulting approximations can be

expected to be valid onl)over time intervals that are short relative to the

period of the rotation although they could be long relative to the period (say)

of the Keplerian elliptic motions representing motions (in the Hill case) in

which m I and m 2 are very close to each other.

All of this is not in the least surprising, since the same change in time

scale applied to the equation (I0) modified the latter merely by introducing a
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factor X -b on the left. llence, on multiplying by X6 and then allowing k

to approach zero, we get

(20) _ = 0 , _ = k + i, ..., n
a

as the limiting form of the other decoupled system. The time interval for a

valid approximation of (12) by (19) would presumahly be comparable to the time

interval for a valid approximation of (I0) by (20).

1.4, Hathematical interpretation

The above intuitive discussion, about the "introduction of parameters" and

the "exaggeration" of certain effects by allowing the parameters to approach

their limits, may have had the desired effect of minimizing the complication of

formulas; but it has resulted in a logically inconsistent notation; and it may

possibly have baffled the reader in other respects as well. In order to

clarify this situation we offer the following mathematical interpretation of

the main result of this Section.

Consider the n- body problem with the n masses denoted by ml, m2, ...,

3 3 3 3
mk, s mk+l, s mk÷ 2, s mk, 3 .... , s m n. Let the position vectors of these n

bodies relative to the center of gravity of the first k of them be denoted

k2rl,respectively by ..., k_rk , srk+l, ..., sr n and let the time be denoted

by kSt. |_e regard s and k as constant (scalar) parameters. In this rather

unfamiliar notation the usual equations for the n-body problem (taking the

£ravitational constant to be unit},) may be written out. Thus the r's,

considered as functions of t, are found to satisfy the system i

(21)

d2ri
---5--= E

dt* j_i Irj-ri 15

n k4s3ma(sra-k2ri )
+ E

a-k+l Isrj k2ri 15

" U-I kE nE k4sSm}ma(sra'k2r))

j=l a=k÷l Isr - k2rjl 3
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{22)

d2ra k s'IX6m]{_2r]-Sra} s2;_6mB(srB-sr )
_= E * Y-

dt 2 }=z Ix2r}-sr [3 _ IsrB-sr )3

2 2

X6 _ i k n s m_m_(sr_-X r_)

j=l 8=k+l lX2rj-sra[ 3 '

where u " m 1 ÷ m2 ÷ ... + mk. Letting s _ _, equations (21) take the form

d2r i _ n X6 mar i 3mara(r a . ri) )
{23) --= _ ÷ Z {- --÷

dt2 j_i [rj-ri]3 a=k÷l Ira]3 It[ s

and equations (22) take the form

d2r n msr B

c24) _ - x6 c z m_--!%'r'--! _ -_)
dt 2 S_a IrB - r l s _-k.l IrBI

Equations (23) and (24) are, of course, mere modifications of equations (12)

and (10) respectively. Namely they contain the parameter X) since the time is

here denoted by X3t instead of t as in (12) and (10). I)anial decoupling

has been achieved in the limit s _ ®, since the equations (24) are independent

of rl, ..., r k. But the equations (23) for X _ 0, still contain all n of

the unknown vectors. Complete decoupling only occurs in the limit X ÷ 0,

leading to the systeras displayed in formulas (19) and (20).

II. QUASI FIRST INTEGRALS

II.1. Definition

Consider the system

Cl) _ - fCo, x, y), _ - g(o, x, y) ,

where x and f are N-vectors, where y and g are K-vectors, where o is

a scalar parameter, and where the dot denotes differentiation with respect to

the independent variable t. We also assume that f and g are of class C'

in the region where solutions are considered. The system (I) is evidently of

order N + K.
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Suppose that this system is partially decoupled when a takes on a

specific value, say O, in the sense that g(O, x, y) is independent of x.
We write

(21 g(0, x, y) = GCy) ,

where G is a K-vector. Let y(tl denote any fixed solution of the

"decoupled" system

Cs) _ - cCy)

and consider the "non-homogeneous variational equations"

C4) Y - Gy[yCt)]Y + go(O, x, yCt)) ,

where Y is a K-vector, where G is the Jacobian matrix of the components
Y

of G with respect to the components of y, and where go is the partial

derivative of g with respect to o,

A function F(t, x, Y) is said to be a quasi-first integral of the system

(s) _ - f(o, x, yCt))

of order N, if it is an ordinar_ first integral of the (N + Kith order

consistin_ of (41 and (S).

In other words, if x(t) is any solution of (S) and if the pair

[x(t), Y(t)] satisfies (41, then

(6) F[t, x(t), Y(t)] _ constant.

Since (S) does not involve Y and since (4) is linear in Y, it is easy to

express Y by quadratures in terms of x. In fact, if fl(t) is a fundamental

matrix solution of the homogeneous variational equations,

- Gy[yCt)]a ,

then any solution of (4) must assume the" form

t

Y(t) = fl(t) [c * f fl(sl "I ga(O, x(s), y(s)1 ds] ,
0

where c is a suitably chosen constant K-vector. Conversely, if c is an

arbitrary constant K-vector, the Y(t) given by the last formula satisfies (4).

Hence inserting this expression for Y(tl into (6), we see that our definition

of a quasi-first integral of (S) implies that
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t

F[t, x(t), _(t)(c ÷ f R(s) -1 go(O, x(s), y(s))ds)] _ constant ,

0

no matter how the constant K-vector c may be chosen.

We first wish to discuss this definition with respect to the system (21)

and (22) of the previous section. These form a system of 3n equations, each

of the second order, in the components of the r°s. floweret, we have taken the

origin at the center of gravity of ml, ..., mk, so that we have three known

linear relationships among the unknown vectors ri, ..., rk. _ese relation-

ships render three of the equations (21) redundant. Thus the system (21) and

(22) provide only 5n - 3 independent equations of the second order, 5k - 5

from (21) and 5(n - k) from (22). These second order equatio_ may each

be replaced by two first order equations by the familiar devise of usin_ abase

space instead of configuration space. Equations (21) are therefore equivalent

to a set of N = 6k - 6 first order equations and equations (22) are

equivalent to a set of K = 6(n - k) first order equations. It is with these

understandings that we consider the system consisting of equations (21) and (22)

of the preceding section as an example of the system (i) of the present section.

We take s - o "I so that as o _ 0, the system becomes partially decoupled as

already explained.

the full system of N ÷ K = 6n - 6 equations admits four well known first

integrals corresponding to the energy and the three components of angular

momentum. (The other six integrals of the n body problem, namely those

corresponding to the linear momentum, are not available because of the choice of

our non-inertial coordinate system. They would be used for obtaining positions

with respect to an inertial system in terms of unknown r's).

The quasi-first integrals were invented to investigate what happens to

these first integrals in the partially decoupled system. Briefly as o _ O,

all four of these first integrals reduce to first integrals of the system (24)

of the previous section; while the system (25), considered for a fixed solution

of (24) in which ra(t) are regarded as known for a = k ÷ I, ..., n, has, in

generalp no first integrals whatever. It does turn out, however, to possess

four quasi-first integrals in a manner described in a more general setting below.

II. 2. Theorems on Quasi-First Integrals

In the sequel we suppose that the system (1) admits a first integral

h(o, x_ y) and that h(O, x, y) is independent of x. Let

(7) h(O, x, y) - li(y) .
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We also assume that both h and il are of class C".

Theorem i. If y(t) is any fixed solution of (3), then the function

(8) FCt, x, Y) = ho(O , x, yCt)) ÷ llyCyCt))Y

is s quasi-first integral of the system (5).

Proof. Since h(a, x, y) is a first integral of (1), we have

hx(a , x, y) f(a, x, y) ÷ by(a, x, y) g(a, x, y) -= 0

Differentiate this with respect to o and then set o • O. Remembering (2)

and (7), we find in this way that

(9) hox(O , x, ),) f(O, x, y) ÷ hoy(0 , x, y) G(y) ÷ |ly(y) go(O, x, y) - 0 ,

since hx(0 _ x, y) = O by (7). Also the system (3) admits the function H(y)

as a first integral. Thus, we have the identity

lly(y) C(y) =- 0 ,

Differentiate this with respect to y and then set y = y(t). We thus get

llyy(y(t)) G(y(t)) * Hv(Y(t)), Gy(y(t)) = O

Form the inner product of the left member of this last identity with the vector

Y. tqe thus obtain

(to) Y llyy(y(t)) G(y(t)) * llyCy(t)) Gy(y(t))Y = 0 ,

or _ore briefly

(11) [llyyC ÷ lly(;y]Y - 0 .

Now evidently, from (8) and (3), we have

_F

(12) _- = [ho/(o , x, y(t)) • llyy(y(t))Y] G(y(t))

(13) _--_1:f(O, x, yCt)) • haxCO , x, yCt)) f(0, x, y(t))

F

(14) _r (C.v(y)Y ÷ go(O) x, ),(t))} - lly(y(t)) ((;ytY)Y ÷ go(O, x, y)) .
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We now add (12), (1S), and (14). On the right hand side the underlined terms
cancel out because of (9). The other terms cancel out because of (11) and the

fact that II GY = HyyYG, the Hessian matrix H being symmetric. Thus we
find that YY YY

_F • 3F 3F {Gy(y(t))Yg-_ _-_ f(0, x, y(t)) "_V • go(0, x, y(t))) -- 0 .

_lence F is a first integral of the system composed of (4) and (5), and hence,

by the definition, it is a quasi-first integral of the system (S), as we set out

to prove.

In the previous subsection we indicated how the Y can, in general, be

eliminated from a quasi-first integral by use of quadratures acting on the

unknown x. The method involved the knowledge of a fundamental matrix solution

of the homogeneous variational equations. In the particular instance treated in

Theorem i, where Y occurs only in the combination lIy(y(t))Y as in (8), this

elimination is much easier. The essential facts are displayed as follows:

Theorem 2. If y(t) is any fixed solution of the system

(as) _ - G(y),

which has the first integral ll(y), and if Y(t) satisfies the non-homogeneous

variational equations,

(16) Y - Gy(y(t))Y + K(t) ,

then

t

(17) HyCy(t))Y(t ) = _ lly(y(s))K(s)ds ÷ Hy(y(to))Y(t 0) .

t o

In particular Hy(y(t))Y is a first integral of the homogeneous variational

equations (cf. special case K(t) _ 0).

Proo_____f. Since [{(y) is a first integral of (iS), we know that Hy(y)G(y) _ 0

is an identity in y. Differentiating with respect to y and then setting

y - y(t), we obtain the following identity in t:

llyy(y(t)) G(y(t)) + llyCy(t)) GyCyCt)) _ 0 .

Forming the inner product of the left side of this identity with the vector

Y(t) we obtain
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(18)
Byy(yCt)) G(y(t)) Ytt) * Hy(yCt)) Gy(yCt)) Y(t) _ 0 .

On the other hand

d [Hy(y(t)) YCt)] - HyyCy(t))y(t)Y(t) + l|y(yCt))Y(t)dt "

Hence, from (1S) and (16), we find that

d

d"t- [Hy(y(t))YCt)] - llyy(y(t))G(y(t))Y(t) ÷ tlyCy(t))Gy(y(t))Y(t) + [[yCy(t))K(t).

But the first two terms on the right of this equation cancel because of (18).

What is left is equivalent to the stated theorem.

Theorem 5. Under the hypotheses of Theorem i, let x(t) be an arbitrary

_on of (S). Then

t

ha(0 , x(t), y(t)) + ]

t o

lly(y(s))go(O, x(s), y(s))ds • constant.

Proof. Since the F of formula (8) is a known quasi-first integral of (S),
i-_"[_'known at once that

(193 ha(0 , x(t), yCt)) ÷ lly(yCt)) Y(t) • constant ,

where Y(t) is anyvector satisfying (4), x being set equal to x(t).

then know from Theorem 2, with K(t) • go(0, x(t), y(t)), that

t

Hy(y(t))V(t) - ] Hg(y(s)) go(0, x(s), y(s))ds + constant .

t o

Inserting into (19), we obtain the result to be proved.

But we

II.3. Application to Reduced 3-Body Problem

The detailed application of the theory of quasi-first integrals to the

systems of the previous Section has not been carried out. Instead we nresent

the following outline of how the application may be made to the planar reduced

three body problem and in particular to the restricted problem, at least to the

point of producing, in this example, the constants of motion referred to in

Theorem 5.

We consider the planar three body problem with three masses o, _, i - _.

We use two frames of reference, one with origin at the center of mass of the
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three bodies, and a parallel frame with origin at the body with mass u. We let

x10 x 2 be the coordinates of o with respect to the first frame, and we let '

Yl _ Y2 be the coordinates of i - _ with respect to the second frame. Then it

is elementary, though somewhat laborious, to show that the full planar three

body problem may be reduced to the solution of the following system of

differential equations:

(20)
_i " " _[(a * l)x i * (i - u)yi]R "5 - (i - V)[(o ÷ l)x i - u Yi]r "3

i - l, 2.

(21)

7"i " " Yi[Yl 2 ÷ Y22]'S/2 + a[(o÷l)xi " "Yi ]r'S " °[(°÷l)xi + (I'_)Yi]R'3

i =1,2.

where, both in (201 and in (21), we have used the abbreviations,

(22)

2 . .
r = [(o÷l)x 1 Uyl ]2 ÷ [(o*l)x 2 uy2 ]2

R 2 = [(c*l)x 1 ÷ (1-U)yl ]2 ÷ [(o÷l)x 2 * (1-u)Y212

The four second order equations displayed in (20) and (21) are equivalent

to eight first order equations, which form the system to be identified in this

example with the System (i). Thus N = K = 4 and .x and y are to be

regarded as four vectors with components (xl, x2, Xl, x2) and (Yl' Y2"_1'Y2 )

respectively. The system has two first integrals,

h (1) = o(o÷l)(xlx 2 - xlx2) + _(1-,)(yl_ 2 - ,_lyo)

and

• 1 e(o÷l)(_12 _2 2) ÷ I _2 2) u(l-u) uo (1-_)oh (21 _- ÷ g _(1-U)(212 " - " R r

Thus, we obtain
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423)

ha(1) (% x, y) = xl_ 2 - ilx 2

Ei (i12 122 ) %_ roi---5_
h (2) (o, x, y) - * - ,-r--

g

where R 0 and r0 are obtained from the expressions for

ively by setting o = 0 in (22).

(24)

R and r respect-

ll(1)(y) - h(1)(O, x, y) • u(l-u}(yl,_ 2 - _lY2 )

• 1
U(2)(y ) = h(2)(O, x, y) _ u(i.W(9l 2 ÷ 922) u(1-_)

2 2

/Yl *Y2

The system (3) in this example is represented by 421) with o = 0, namely

425) Yi = " Yi[Yl 2 " Y22]'3/2 '

and the system (5) is represented by

i- i, 2.

(2o) _i = " u[xi ÷ (l'u)Yi]RO "3 " (1-u)[xi " uYi]ro'3 ' i - i, 2,

these being the equations for the reduced problem of three bodies when Yl and

)% are thought of as being known functions of t satisfying (25). The four-

vector g (0, x, y) is readily seen, in this example, to have the components,

O, 0, (x I - _Yl)r0 "S - (x i * (l-_)Yl)R0$ , (x2-vY2)r0 "3 - (x2÷CI-u)y2)R0 "3 •

According to Theorem 3, we should have two constants of motion, which we shall

denote by c I and c2, given by the formula,

t

• ha(i)(O, x(t), y(t)) ÷ ] lly(i)(y(s)) go(0, x(s), y(s))ds, i - i, 2.c i

to

_e now have available all the data necessary for the use of this formula, namely

the four components of go(O, x, y), and the expressions for ho(i)(o , x, y)
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and }| (i)(y), given by (23) and (24) respectively. We thus obtain
Y

t

(27) c 1 _ Xl_¢ 2 - XlX 2 * U(1-u) f (x2Y 1 - xlY2)(r0 "3 - R0"3)ds

t o

t

c2 • _xII • 2 * x22) " _0"u (1-b)r0 ÷ u(I-u) f (Xl_ 1 * x2_2)(r0 "3 - R0"3)ds
to

(28)

t

- _(1-U) f (Yl_l ÷ Y2_2)(_ r0"3 * (1-_)Ro-3)ds

t o

where the symbols xi' xi' Yi Yi' ro' RO* occurring outside the integral signs,

represent functions of the independent variable t; but, when they occur

inside the integral signs, they represent the corresponding functions of s,

the variable of integration.

In the special case of the restricted problem of.three Bodies, in which we

take Yl(t) = cos t and Y2(t) = sin t, we have ylYl ÷ y2y 2 - O, so that

the second of the two integrals in (28) drops out completely. _breover

Yl " " Y2 and Y2 = Yl' This means that the first of the two integrals in

(28) is the same as the only integral in (27). Thus we find that

1 (_12 _2 2) • • u (l-u)
(29) c2 " Cl = _ ÷ - (XlX2 " XlX2) " "_0 " r0

t

(30) cI . Xl_2 - _lX2 ÷ _(1-_) /
t o

(x2(s)cos s - Xl(S)sin s)(r0"3 - R0"3)ds .

Thus in this particular case, we have a first integral in the ordinary sense,

namely the integral of Jacobi. In rotating coordinates (_I' ¢2)_ connected

with the non-rotating coordinates by the transformation,

it

(x 1 ÷ i x2) - (_1 ÷ i _2 ) e ,

the equations (26), in which Yl = cos t and Y2 = sin t, become
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U(5l÷l-u) (1-_) (_1-_)

RO3 ro

(31)

u& 2 (l-u)62

_2 ÷ 2[1 • _2 " _" 3 '

R0 r 0

where R 0 and r 0 have the same meaning as before but are now expressed in

terms of (_i' _2 ) instead of (Xl, x2) , so that

R02 = (61*I-u) 2 ÷ 622 and r02 - (61-u) 2 ÷ _22 .

These are the usual equations for the restricted problem of three bodies.

The equation (29) is transformed into

1 __ _ = c2 . Cl ,
([12+[22) - 1(612÷622 ) - RO r 0

which is the usual form of the integral of dacobi. Finally the equation (30)

is transformed into

t

612 ÷ 622 + £i[2 - _162 * u(l-u) f &2(s) Ire -3 - Ro'3]ds " c I •

t o

The fact that the left member of this equation is a constant of the motion is

an easy direct consequence of (31).

III. IiRROR ESTI HATI ON

III.l. The llyperbolic Cosine Estimate

We wish now to present a method for estimating the error in the computat_n

of trajectories by using such decoupled systems, as those considered in Section

I, instead of the exact systems. Actually the method applies to any kind of

approximation, whether partial or complete decoupling occurs, or not. The

problem is formulated as follows:

Suppose we have two N-vector functions f(x) and g(x) of the N-vector

x, defined and continuous in some region It of N-vector space. Suppose also

that f and g are approximations to each other in the sense that the norm

of their difference is bounded throughout R by some positive number 5. The

smaller 6 is, the better the approximation. We thus assume that in R
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(l)

The norm

usual properties of a norm in

(2)

and

LLf(x) - g(x)L[ & a.

II...[[ referred to may be chosen arbitrarily, so long as it has the
N-dimensional vector space.

and y(t) E R be solutions of the systems

d2x
-- : f(x)
dt 2

Let xCt) c R

(3) -i : _(y)
dt 2

assuming the same initial conditions

(4) x(O) : y(O) - a, say, and xCC) • y(O) : b ,

and defined on the interval 0 < t _ T. The problem is to find as small an

upper bound as possible for [t_(t) - Y(t) ll.

In the application to the n-body problem, N = 3n, and the reEion R is

a region of configuration space in which the distance between each pair of the

bodies exceeds a positive number assigned to such pair.

We could write the systems (2) anti (3) as systems of first order equations

by doubling the dimensionality of the space, and then we could read off from

the classical literature estimates of the required tyue, at least, if one of

the vector functions f or g satisfies a Lipschitz condition,

(s) I[fCx') - f(x) lt &z_ llx' - x[I.

we prefer, however, to adapt the classical methods directly to the systems of

second order equations in order to get better results. (of. E. Kamke,

Differentialgleichungcn, LosunRsmethoden, und tosungen, fihelsea Publishing

Company, New York, 1948, pp. 40o41.) We shall indeed assume that (5) holds as

long as x and x' are both in R) and, for ease in later formulations, we

introduce the following definition.

An N-vector function f defined in a region _ of X-dimensional vector

space and satisfying the Lipschitz condition (5) with Lipschitz constant B is

said to satisfy the Extension Hypothesis relative to R and _, if for ever>,

positive number A > B it is possible to define an N-vector function fA

throughout the whole of N-dimensional vector space such that

(6) fA(x) _ f(x)
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for all x c R and

(7) [tfA(x' ) - fA(x)[l £ A tl_' - _ll

for any two N-vectors x and x', whether in R or not.

Theorem i. If f satisfies the Extension llypothesis, relative to R

and if 41), (2), 43), 441 are also assumed, then

l

(S) ]ix(t) -y(t)l [ _6B "1 (cosh (Bit) - 11 for O_t_l.

and B,

Proof.

and

ClO)

x(t) and y(t) satisfy respectively the systems of integral equations

t

x(t)- a. ht + /
0

f(x(s))(t's)ds

t

yCtl = a • bt * f gCY4s))(t-s)ds

0

which under the initial conditions (4) are equivalent to the differential

systems [2) and (3). Let

Xo(t) - y(t) for 0 < t A T

(11) ..................
t

Xk(t) = a * ht ÷ f fA4Xk_l(s))tt-s)ds, k - 1, 2, ....
0

We note that all these successive approximations Xl(t), x2(t), ... must exist

for 0 < t _ T even though some or all of them do not stay within the region

R. For the function fA is defined and continuous over the whole N-vector

space. It is easy to prove that

lim x4t) uniformly on [0, T]
(12) k*_ Xk(t) =

In fact, from 411) and (7), we find that

t

Ilxk.lCt) - xk(t)ll a A / Ilxk(t) - Xk.ltt)]l (t-s)ds •
0
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If we now let _ = max Ilxlct) - x0Ct)[I over the interval [0, T], we may

now prove easily by induction that

[[Xk÷l(t) - Xk(t)[[ _ Ak _ t2k/(2k)l for t e [0, T] .

It follows from the Weierstrass test that the sequence {Xk(t )} converges

uniformly to some vector function x*(t), and, since, from (7) ,

[IfACXk(t)) - fACX*(t))[] _ A [[XkCt) - x*Ct)l[,

it is also obvious that

lim

k*,_ fA(Xk (t)) • fA (x*(t)) uniformly on [0, T] .

llence passing to the limit as k _ ®, we see from (11) that

t

x*(t) - a + bt ÷ f fh(X*(S))(t.s)ds 6

0

This means that x*Ct) satisfies the system x • fA(X) and the initial

conditions (4). But xCt), because of (6), also satisfies the same conditions.

Because of the uniqueness theorems covering such solutions, it follows that

x*(t) _ x(t). Thus (12) has now been established.

From (10) and (ii) we are enabled to write

t t

y(t) - Xk(t ) - f g(y(s))(t-s)ds - f fA(Xk.l(S))(t.s)ds .
0 0

whence, using the fact that y(s) e R so that fA(Y(S)) = f(y(s)) by (6), we

find that

t t

yCt) - Xk(t ) = f (g(yCs)) - f(yCs)))Ct-s)ds • f

0 0
CfACYCs)) - fA(Xk.1 (s))) (t-s)ds.

Using (1) and (7), we now find that

t

Ilyct) - XkCt)[[ < (6/2)t 2 * A /

0
[[yCs) - Xk.iCs)lj (t-s)ds.
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From this we prove routinely by induction that

6 k APt2P

[[y(t) - XkCt)ll &_ z
p-1

Hence allowing k _ _, we find, from (12), that

1

< 6 ® APt 2p I

Ily(t) - x(t) ll _ _ p_l (2-T_T= _A- (cosh(A T t) - 1) .

Since this is true for all A > B, we find easily that (8) must hold as stated

by the theorem.

Theorem 2. The inequality (8) can not be improved under the hypotheses of

Theorem i.

Proof. We take the example in which N - I, [[xl[ = [xl, f(x) = Bx,

g(x-T_- Bx + 6, and R is the set of all real numbers. Thus if (2), (3), and

(4) are to be satisfied, we find at once that the difference y(t) - x(t) = w(t),

say, must satisfy w - Bw + 6 together with the initial conditions
w(0) • w(O) • 0. Integrating, we find that

1

yCt) - x(t) • w(t) = 6B -I (cosh (B T t) - i).

so that it is possible in particular examples for the equality sign in (8) to

hold.

Theorem 3. t_der the hypotheses of Theorem i, we also have

1 I

(13) II_(t) - _ct)ll _ _BT sinhCB _ t) .

Proof.

t

£ct)- _,(t). /
0

Subtracting (10) from (9) and differentiating, we see that

(f(x(s)) - gCYCs)))ds

t t

• f (f(x(s)) - f(y(s)))ds ÷ f (f(y(s)) - g(y(s)))ds
0 0

¿lance, from (S) and (1), we obtain

t

II£(t) - _(t)ll _ B /
0

llxcs)- y(s)llds+ 6t .
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We now use Theorem 1 to obtain

t 1 ! 1

l{£(t) - _(t)l[ =__ f (eosh (B 2 s) - 1)ds • _t = 5B" 2 sinh B7 t ,

0

as we wished to prove.

III.2. A Useful Lemma

In the application of the preceding subsection to the equations of motion

for the n-body problem it is necessary., first, to choose a re_ion R in which

a suitably chosen Lipschitz condition will hold, and, secondly to verify the

Extension [lypothesis, introduced in Theorem I. For both of these purposes the

following Lemma is useful.

Lem_aa I. Let _k(r) = r -I if r _ I; but, for 0 _ r _ I, let

(6k*S)(2k÷3) (2k÷l)(2k÷3) r2 3(2k÷3) r2k 3(2k*I) r2k÷2
@k (r) " 8(k+l)k 8k(k-l) ÷ 8k(--_T_l) - _ where k> I.

Then these definitions agree at r - I. _loreover Ck c C'" for 0 _ r < _ and

l@kCP)(r) lim O, p i, 2.
J _ p ÷ Op(k), where k--,._ Op(k) • =

Proo.____f. To show that Ck c C'" it is only necessary to compute the right handed

and left handed derivatives of orders I, 2, 3 at the one point r = i where

@k obviously fails to be analytic. It wi_ appears that each left handed

derivative at this point is equal to the corresponding right handed derivative.

Moreover these right and left derivatives are also the limits of derivatives

taken on the right and left respectively. The details are elementary and are

omitted. Ne record, however, that for 0 _ r _ i.

(2k*l)[2k÷3) 3(2k*3) r2k-1 3(2k÷1) 2k÷l
@'k (r) " " 4k(k-i) r * _ - _ r

@,,k(r ) • (2k÷l)(2k÷3) 3(2k÷3)(2k-l) 2k-2 3(2k÷I) 2 2k
" 4k(k-l) ÷ 4(k°l) r 4-_ r

#,,,k(r) - 3[4k2"4k-_ r2k-5 . 3(4k2"4k'Qr2k'l
2 2
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Since %(r) and its derivatives are, for r _ I, simple monotonic
functions of -r which tend to 0 as r ÷ _, the problem of estimating the

maximum moduli of the first two derivatives of _k(r) may be reduced to a

study of what happens on the interval [0, i],

Since @'"k(1) - -0, since ¢'"k(r) has a simple zero at

.4k2÷4k.3. I/2

r • r k - t---W----'--) , and since it vanishes nowhere else on the open interval
4k_÷4k.l

(0, l), it follows that ¢"k(r) assumes its maximum at r • r k. But a

straight forward calcultion based on the formula for ¢"k(r) shows that

2 k

<2k÷l)(2k+3) 12k'÷12k+3 (4k +4k-3)
¢"k(rk ) •" 4k(k-l) + ( 4k(k-l) ) ---'w-'-----

4k_+4k.l

From this, we obtain by routine methods that

lim _,, (r) - 2
k_ k k

lim
Since k_._ ¢"k(O) - -I and ¢"k(r) is monotonic increasing on [0, rk] and

monotonic decreasing on Irk, _), it follows that

J¢"k(r) J < 2 + 02(k), lim-- k_._ 02(k ) • 0 .

which is one of the two desired estimates. To get the other estimate we write

the above formula for #'k(r) in the form

¢'k(r) - r hk(r)(15)

where

It is readily found that

(00 i). Hence

(2k÷l)(2k÷S) _r2k-2 . _ r2khk(r) • " 4k(k-1) ÷ 4(k-1)

htk(r ) is positive throughout the open interval

(2k÷l](2k+3]
4k(k-l) • hk(O) _ hk(r) _ hk(1) " ¢'k(1) " - i
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for all r on the closed interval [0, i]. Hence multiplying by r and usin F

(13) we obtain, for r ¢ [0, i], the following inequalities

(2k*l)(2k.S) (2k*l)(2k-5) rhk(r) = _," 4k(k-1) _ - 4k(k-1) r _ k(r) _ - r _ O,

It follows that I*'k(r) l £

required estimate.

(2k.i)(2k.3)
4k(k-1) = 1 ÷ 02(k ) ,

which is the other

III.3. Lipschitz Constants for Non-Convex Regions

If f is an N-vector function of class C' defined over a convex re_ion

R in the N-dimensional vector space of the vectors x and if the N 2 partial

derivatives of the components of f with respect to the components of x are

bounded in R, then one can always find a Lipschitz constant B, which is

related in a simple way to botmds on certain expressions involving these N 2

partial derivatives m such that (S) holds for any two points x' and x in R.

}:or instance if P is the least common upper bound for the absolute values of

all N 2 of these partial derivatives, one may take B = NP, at least if l_II

n 2.2/- the "uniform" norm max (ixil) '
denotes the "Euclidean" norm (iZl x i ) , or

l<i<N

or the nameless norm _ Ixil .
i=I

If the region R is not convex the situation is mere complicated. One way

of dealing with it is to choose a convex region R* which contains R and seek

a C' extension f* of f over the whole of R* in which the bounds on th_ e

derivatives over R* exceed the bounds over R by certain increments which

are regarded as permissible. These permissible increments in some cases, which

we term regular (but by no means in all cases), may be taken arbitrarily small.

From these bounds over R*, we then obtain a Lipschitz constant B" such that

(14) Ilf'(x') - f*(x)[I £ B* IIx' - xll

as long as x and x' are in R* and hence a fortiori as long as they are in

R where f* - f.

In the _ case, just defined, the B" would exceed by an arbitrarily
small amount the B _ained in the same way from the bounds of the partial

derivatives over R but ignoring the non-convexity of R where f" - f. In

other words if c is any positive number we could (in the regular case) choose

f* in such a way that the B* in (14) is not greater than g ÷ ¢; so that,

remembering that f* is always the same as f in R, we obtain, for any two

points x' and x in R, the following inequality,
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Ilf(x') - f(x)l[ _ (a , c)ilx' ÷ xll.

Lience, allowing _ to tend to zero, we obtain (S). Thus in the regular case,

the Lipschitz constant may be regarded as related to the bounds for the partial

derivatives exactly as they should be if R were convex.

III.4. Application to the n-Body Problem

In the problem o£ n bodies, the N • 5n components of the vector x

are denoted by (xl' Yl' Zl' x2' Y2' z2' "''' Xn' Yn' Zn)' where xi' Yi' and

z i are the coordinates o£ the mass point m i. The 5n components of f may

be written in the form

i aU l _U i aU
i - i, 2, ..., n

' ' m. _z. '
mi _xi mi _Yi i i

where

m. m.

U• _
• , r..
I<_ zj

and rij - ((xi-xj)2 * (yi-yj) 2 + (zi-zj)2) I/2 .

A typical closed region R to be considered is one which excludes all

points for which one or more of the r.. are zero, say the set of all points
ij

for which r..ij_ aij" i, j • i, 2, ..., n; i # j. llere oij. - o..j1 are

(i/2)n(n-l) assigned positive numbers. This region is evidently not convex;

but we nevertheless are in the situation of the regular case mentioned above.

In fact we can take R* to be the whole 5n-dimensional space and obtain a C'

extension of f over the whole o£ R" by choosing a positive integer k • 1

and taking the 3n components of the extension f* to be

l _Vk i _Vk I _Vk
_--r:-_, , , i - I, 2.... n.
,,,i.^i m i m i _z i

where

• Z m. m. o.. "I ek(aij "l rij_,Vk
i<j i j B

Then from the lemma of SubSection III.2 one finds that hounds for the

partial derivatives of the f* over the whole of R* exceed the bounds for

corresponding derivatives of f over It by arbitrarily small increments
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provided that k is taken sufficiently large.

It is evident also that this same substitution of Vk for U suffices

to establish the Extension tlypothesis of Theorem i+ Sub-Section III.1.

For simplicity, we have considered here only the unreduced form of the

equations for the n-body problem; but sim£1ar considerations would apply

equally well also to such other forms as the helio-centric equations, the

bat_centric chain forms, or the various reduced equations considered in Section

I.
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SUbI_RY

The perturbation problem for a system of non-linear differential

equations under general linear (but not necessarily homogenous) two point

boundary conditions is reduced to the problem of solving k "bifurcation"

equations, where k is the degeneracy of the problem. In the non-degenerate

case k = O, the set of such equations is vacuous and the problem is

automatically solved. If k _ 0 and if there are k independent first

integrals, a significant transformation of the bifurcation equations in terms

of these first integrals is carried out. The largest section of the paper is

concerned with the construction of generalized Green's matrices (and with

kindred matters) for linear systems with boundary conditions of arbitrary

degeneracy. The generalized _;reen's matrix for the variational equations is

prerequisite to our treatment of the non-linear problem.

INTRODUCTION

We extend here some results previously obtained for periodic boundary

conditions. Of. Annals of Mathematics, volume 63 (1956) pp. 535-548. Our

original purpose was to develop general methods for the pertu_ation of

periodic solutions of the n-body problem satisfying certain added conditions

of symmetry. For this purpose the problem frequently could be formulated in
terms of two point linear homogenous boundary conditions. It then became

evident that the same methods might work also for problems of entirely

different nature. Hence we devised the formulation described in Section I,

where the boundary conditions are linear but not necessarily homogeneous. It

is probable that much could be done for non-linear boundary conditions, but

our historical introduction to the problem was such that questions of this

sort arose too late to be considered here. There is obviously much still to

be done in this field. With this in view we have carried out the developmen_

of Section II on linear systems to a rather more complete state than strict_

necessary for the primary purposes of this paper alone.
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I. FORblULATION OF TIlE PROBLEM

We are concerned with the problem of solving a system of differential

equations under general linear (but not necessarily homogeneous) two point

boundary conditions. More precisel_ let the differential system be written in

the form,

dK/dt • F(t, 6, _) ,

where t is the (scalar) independent variable, 6 is an n-vector the

components of which are the unknown functions, and _ is a scalar parameter.

F is an n-vector function defined and of class C' for 0 _ t _ T, as long

as _ and _ belong to suitable domains. We seek functions 6(t) satisfying

the above system as well as the following system of boundary conditions:

B 0 6(0) * BT KCT) • p ,

where p is a given n-vector and both Bu and BT are given n x n matr_.
This system of boundary conditions is equivalent to n scalar conditions, which,

if they are independent, are presumably just right to determine the n constants

of integration for our n th order system of differential equations. To insure

the independence of our boundary conditions, we assume that the rank of the

n × 2n matrix (BoP BT) is equal to n.

The perturbation problem, to which we devote attention, assumes that for a

particular value of U, which without loss of generality we may evidently take

to be 0, we have a known solution, say g(t). Our problem is to determine a

solution for u # O, say £(t, u), such that lim &(t, U) • _(t).

We obtain a more convenient formulation of our problem by introducing the

following notations:

x(t) • 6(t) - _(t)

A(t) • F¢Ct, ¢(t), O)

f(t, x, _) • F(t, ¢(t) ÷ x, _) - l:(t, _(t, 01 - A(t)x ,

where F 6 denotes the jacobian matrix of the components of F with respect to

the components of 6. Since g(t) is regarded as known, so is the matrix A(t).

And evidently f(t, xD u) is of class C' and vanishes together with its

partial derivatives with respect to the components of the vector x, when

• 0 and x = O.

Since C(t) is supposed to be a solution of the two point boundary problem
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when

and

• Oj we have

d_(t)/dt = F(t, _(t), O)

B0 _(0) * BT ;(T) • p .

It is now clear that _ will be a solution of the original two point

boundary problem if and only if x satisfies the system

dx/dt • A(t)x * f(t, x, _)

and the homogeneous linear botmdary conditions

a 0 x(O) ÷ B T x(T) - 0 .

Our perturbation problem can now be formulated in terms of finding a solution

x = x(t, p) of the last written differential sytem and the last written

boundary conditions such that tim x(t, _) • O.

It is relatively easy to prove, for lu I sufficiently small, the existence

of such solutions provided that the so-called variational system

dx/dt = A(t)x

has no solutions satisfying the above homogeneous boundary conditions ether than

the "trivial" solution x - 0. This is the so-called non-degenerate case. In

this case the solution may always be found by a convergent process of

successive approximations.

Hany of the interesting problems in celestial mechanics are not, however,

of this non-degenerate type. The problem is said to have degeneracy k, if the

variational system has k linearly independent solutions satisfying the above

homogeneous boundary conditions (upon which all other such solutions are linear-

ly dependent). If k • O, the original problem may have no solution; but, if

it has, it may be found by a method of successive approximations followed by a

solution of a system of k so-called "bifurcation" equations. The way in which

this is done is explained in Section Ill. In the non-degenerate case k = O,

there are, of course, no bifurcation equations to solve.

To prepare the ground for the treatment in Section III, we must present in

the next Section a considerable theory of linear systems. 2"he non-degenerate

case is included because all considerations are valid when k • O. In fact m0st

of the difficulties completely collapse when k = O, many statements and

conditions becoming vacuous.

The linear theory of Section II has close relationship with previous work
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by W. T. Reid on generalized Green's matrices for compatible systems of

differential equations. (American Journal of 3lathematics, volume 53 41931).

pages 4,13-459). In this reference there are references to still earlier work

by G. A. Bliss and others. It would probably be possible to derive all the

results we need by citing various theorems presented by these earlier authors.

It will be easier, however, to give independent proofs; and this will have the

advantage of developing some additional facts, which we shall also need.

II. PRELIHINAP, IES ON LINEAR SYSTEHS

LVe wish to consider continuous

Xn(t)] defined on the interval [0, T] and satisfying n

homogeneous end conditions of the form,

(1) _0 x(O) • BT x4T) * 0 ,

where B 0 and B T are given constant n x n matrices.

A vector x4t) which satisfies 41) will be called admissible.

it will be called inadmissible.

The condition (1)can also be written in the form

(2)

_*'he re (Bn, BT) is,

juxtaposition of B 0

n-vector functions x(t) = [xl(t) , ...,
indenendent _inear

Otherwise

(B O, BT)/X(O)_" 0

\x4T /
of course, the n x2n-matrix formed by the indicated

and 1tT and likewise

x(0)_

x4r)/

is a 2n x I matrix formed by the juxtaposition of (column)vectors x(O) and

x(T). Since the n conditions given by 41) or 42) are to be linearly

independent, it is seen fro_ 42) that it is both necessary, and sufficient to

aubume the rank of (_U' BT) to be n, as we henceforth do. This means that

(l;O, l',T) contains a non-sigular n x n matrix C. The matrix (Bo, BT) may

then be modified by permuting its columns so that it appears in the form

[C, 1)). Then evidently
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where I is the n × n identity matrix. We thus find that there exist n x n-

matrices U 0 and UT, such that

(3) (B0, BT) /U 0 _ - I .

k /U T

by performing on the rows of the sameIn fact, we may obtain UT

permutation as we apply to the columns of (C, D) in order to recover

(B0, BT). We also introduce the matrix U(t) defined by

(4) UCt) = (i - tT'I)u 0 ÷ tT "I U T ,

so that U(O) = U 0 and U(T) = U T. ]%e following 1emma then follows at once
from (3).

Lemma i. If (Bo, BT) is of rank n, there exists an n x n-matrix U(t)

whose elements are linear functions of t such that

(S) BoU(O) ÷ BTU(T ) - I .

Incidentally, although the columns of U{t) are all continuous n-vector

functions of t, they are all inadmissible in the sense of the above definition

of admissibility.

Theorem I. Consider the linear differential system_

(6) dx/dt - h(t)x * f(t) ,

where x and f are n-vectors and A is an n x n-matrix, A and f are

known continuous functions of t, defined for 0 _ t _ T. Let X(t) be any

nxn-matrix such that dX/dt = A(t)X and det XC0) # 0 (and hence also

det X(t) # 0 for any t on [0, T]). Let B0 and BT be given constant

n x n-matrices such that the rank of (B0, BT) is n. Let n - k denote the

rank of the n x n-matrix B0X(0) * BTX(T) , so that k is the number of linear-

ly independent solutions of the homogeneous system corresponding to (6) which

are admissible in the sense (as defined above) that they satisfy the boundary

condition B0X(0 ) . BTX(T ) m 0.

Then there exist (independently of f) a k x n-matrix function _s) and

179



PERTURBATION OF SOLUTIONS OF DIFFERENTIAL EQUATIONS

an n x n-matrix G(t, s), both continuous, except that G(t, s) posseses a

finite jump at t = s, having the following three properties:

I. _e system (6) possesses an admissible solution (i. e., a solution

x(t) such that Box(O ) ÷ BTX(T ) - 0), if, and only if,

T

(7) f _(s) f(s)ds - 0 .

0

II. If (7) is satisfied, the vector function

T

(8) x(t) = f G(t, s) f(s)ds

0

is a solution of (6) and is D moreoverp the only admissible solution orthogonal

to every admissible solution of the corresponding homogeneous system.

III. Whether (7) is satisfied or not, x(t)m defined by (8) is admissib}.

Proo._f. Since n - k is the rank of BoX(O ) ÷ BTX(T)_ there is a k x n-

matrix _ and an n x k-matrix _, both of rank k such that

(9) _t[BoX(O ) * BTX(T)] - 0

and

(1o)

||ore,

or not, is well known to be of the form

t

(n) x(t) = x(t)_ . f xct) x(s) -I fCs)ds ,

0

where the constants of integration are the components of the n-vector

atten_t to find admissible solutions of (O) leads to the equation

BoX(O ) ÷ BTX(T) = O, or

T

(12) [BoX(0 ) ÷ BTX(T)]g ÷ f gTX(T)X(s)'If(s)ds = 0 ,
O

for the determination of

for the determination of

[BoX(O ) * BTX(T)] _ - O.

of coursep 0 < k < n. The general solution of (6), whether admissible

B. The

S. On account of (9), this system of linear equations

B is consistent ifj and cnly ifm
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(13)

T

f
0

O_BTX(T )X(s)'lf(s)ds = 0 ,

which can be written in the form (7), if we let

(14) E(S) - _BTX(T)X(s)'I .

If (13), or (7), is satisfied, it is possible to choose B in infinitely many

ways so as to satisfy (12). Moreover, since the second term in (12) is the

integral of a known matrix function of s multiplied into the vector f(s), we

see that 6 may be chosen to be given by a similar expression; say

T

8 " J P(s)f(s)ds

0

where P(s) is a suitably chosen (not unique) continuous n x n-matrix functim

of s, ind_pen_nt of f. Substituting in (ll) we have

T

(15) xCt) - [ KCt, s)f(s)ds ,
0

where K(t, s) • xct)[P(s) + X(s) "I] for 0 I s < t and KCt, s) = XCt)P(s)

for t _ s _ T. The x(t) given by (IS) always satisfies (6) but is admissible
if, and only if, (7) is satisfied.

We now wish to find another kernel matrix [(t, s), such that, upon

writing

T

(16) _(t) - / _(t, s)f(s)ds ,
0

we can say that the _(t) given by (16) is alwa),s admissible and satisfies (6)

if (7) is satisfied. Since x(t), as given by (15) is admissible if, and only

if, (7) is satisfied, it is clear Zh_Z (7) is equivalent to the condition

T

(17) / [BoK(0 , s) ÷ BTK(T , s)] f(s)ds = 0 ,
0

Hence, if we set

KCt, s) = - uCt)[BoK(0 , S) ÷ BTK(T , s)] ÷ K(t, s) ,

so that
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T

(17-) 7(t) = - u(t) f [*_oK(O, s) + BTK(T, S)] fCs)ds + X(t) ,
0

then X[t) coincides with x(t) whenever (17), or its equivalent (7), is

s,_tisfied. This is true for an)' n x n-matrix function U(t), but the

followin),, statement depends upon choosing U(t) in accordance with Lemma I.

from (17"),we have

T

Box(O ) • B.I_(T ) = - [BoU(O ) * BTU(T)] ] [BoK(O , s) • BTK(T , s) lf(s)ds
0

÷ BoX(O) ÷ BTX(T) ,

which, in virtue of (15) and the fact that [BoU(O ) * BTU(T)] = I by Lemma i,

must vanish. Thus X(t), as defined by (16), must always be admissible, --

whether (7) is satisfied or not, as we wished to prove. And, of course, x(t)

also satisfies (0) if (7) is fulfilled, because we already know that if (7) is

fulfilled 7(t) coT_cides"_i_ which always satisfies (6).

.Next we wish to find a kernel raatrix Ci(t, s) such that the x(t) _iven

by (S) satisfies tile same properties as have already been specified for x(t)

as given by (lb) plus the additional property that x(t) is always to be

orthogonal to every admissible solution of dx/dt = h(t)x.

Assuming that (7) is satisfied, every admissible solution of (6) can

evidently be written in the form

T

(IS) x(t) • X(t)_ Z * f g(t, s)f(s)ds ,
0

where _ is a suitably chosen k-vector. "l]_is follows from the fact that the

columns of X(t)_ form a complete set of admissible solutions of the homo-

geneous equations because of (10) and the fact that the rank of BoX(O) ÷ BTX(_

is n - k. Even when (7) is not satisfied, both terms on the right of (18) are

known to be admissible and hence x(t) as _,iven by (18) is always admissible.

I_c now show that it is always i_ossible to choose c so that

T

(191 / (X(t)J_)' x(tldt = 0 ,

0

in other word__s, so that the x(t) _ivcn b___ (18) iss orthoEonal to all the

admissible solutions of thc homogeneous equations and that this is true
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regardless of whether (7) holds. From (18) and (19) we see that it is

necessary and sufficient for c to satisfy

T T T

] _' X(t)'X(t_ dt • fO _'r- X(t)' f [(t, s)f(s)ds dt - 0
0 0

or

T T T

(20){f_ X(t)'X(t_dt}_- .fo,J_,(f0' 0
X(t)'[(t, s)dt)f(s)ds .

We prove that the k x k matrix within the brackets { } is non,singular by

showing in the following way that it is positive definite. Let q be any k-

vector. Since X(t) "I exists,_ = 0 if, and only if, X(t)_ - O. Since

__ is of rank k, this is possible only if _ - O. The quadratic form

q(X(t)_)'(X(t_)_ _n the components of T is the sum of the squares of the

components of X(t)_q and is, therefore, positive definite (in the real
field). Hence

T T

/ _'X(t)'×(t)_T dt - T (/ _'X(t)'X(t)_ dt)
0 0

_s also positive definite, considered as a quadratic form in the components of
q. Thus we now know that (20) can be solved for c in the form

T

(21) T- / _(s)f(s)ds,
0

where _(s ) is (for a given [(t, s))

matrix function of s, independent of

(18), we finally arrive at (8) with

a uniquely determined continuous kx n-

f. Substituting this value of T in

(22) G(t,s) = x(t)__s) + _(t,s) .

The GCt, s) just introduced by (22) thus satisfies all the requirements

of the theorem; so that the proof of the latter is now complete.

Lemma 2. The rank of the k x n-matrix (_.B T is k.

Proof. Suppose _ is a k-vector such that

(23) "_ C_B T - 0 .

It is enough to show that _ must be tile null vector, for this would mean that
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the k rows of B T would be linearly independent, thus implying that its

rank would be k. Hultiplying on the right by X(T) we have q-(_BTX(T) • O.

it is known that (_BTX(T) • -_BoX(O ), we also haveAnd, since by (9)

_(_BoX(O ) • O. Hultiplying on the right by X(O) "I, we find that

(24) _'01.Bo • o .

Hultiplying(24) and (23) respectively on the right by U(0) and U(T), and

then adding, we obtain

O/.[BoU(O ) * aTU('r) ] • 0

But, since, by Lemma i, the n x n-matrix in the square brackets is just the

identity matrix, we see at once that _(_.= O; and, since the rank of the
k x n-matrix (_ is already known to be k, it follows of necessity that

q • 0, as we wished to prove.

Theorem 2. The rank of E[s) - _BTX(T)X(s)'I
for each value of s on the

interval [0, T] is k.

Proof. This is a mere corollary of Lemma 2, since the rank of X(T) is n

and the rank of X(s) "I is also n.

It should be noted that neither E nor C. are uniquely determined by th_

requirements of Theorem I. However we now prove the following

Theorem 3. Let ]i(s) be any continuous n x k-matrix function such that

T

(25) C = f E(S) II(s)ds
0

is a non-slngular k x k-matrix. Then the G(t, s) of Theorem 1 may be

determined uniquely in such a ma.ner that

T

(26)

Remark.

J" (,Ct, s) llCs)ds • 0
0

A possible choice for If(s) is ECs)'. For, in this case, we have
.|.

c " f _(s) _:(s)'ds ,
0
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whichj since E(s) is of rank k by Theorem 2, is easily proved to be a

positive definite matrix and therefore non-singular.

Proof of Theorem 3, Let GoCt , s) be any kernel satisfying the requirements

of Theorem i, and iet R(t) b_ any n × k-continoous matrix ful*utiu*_ whose

columns are admissible. Thus, if we define

c(t, s) = G0(t , s) - !'(t) _--(s) ,

It is seen that (;(t, s) also satisfies all the requirements of Theorem I.

If we choose

T

l:(t) = (f %(t, s) li(s)ds) c -2 ,
0

it is easy to verify that (26) is satisfied. _oreover, this R(t) is

admissible because G0(t , s) satisfies Property Ill of Theorem i.

Let ¢(s) be an arbitrary continuous vector function, and then set

T

f(s) = $(s) - it(s) C -1 f -=(z)¢(z)dz .

0

We easily see that this f satisfies (7), because of (25). Hence, from (26),

we prove that

T T

x(t) = f GCt, s) fCs)ds - f (;(t, s) $(s)ds .
0 0

If G*(t, s) were a second matrix kernel satisfyin_ the requirements of Theorem

1 as well as (26), we could also write

T T

x*(t) = f G*(t, s) f(s)ds = f (;*(t, s) $(s)ds .

0 0

But x*(t) z x(t) because of the uniqueness statement under Pronerty II. Hence

T

f [(;(t, s) - c,,(t, s)] _(s)ds = 0
0

for arbitrary continuous 0. It follows that G(t, s) =- G*(t, s), thus

completing the proof of Theorem 5.

Lemma 3. If B0 and BT are n × n-matrices and if (BO, BT) is of rank n,
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.hen there exist n x n-matrices F0 and F T such that

(27) BoF 0 - BTF T - O

and such that [F0_ is of rank n. Horeover F 0 and FT are uniquely

\ /FT

determined by these conditions up to a multiplication on the right by a common

non-singular matrix.

Proof. Since (B0, B T) is of rank n, a suitable permutation on its columns

yields an n x 2n-matrix (C) D), where C is non singular. Then
1 \

,c,D_(c-lD_. oc-oc-0 re,ardlessofthechoiceofthen.n-matrix_
| |

Copstruct _ by performing the same permutation on the rows of D

-FT]

as that which when applied to the colurmas of (C, D) recovers (Bo, BT). We
thus have

B0F 0 - BTF T • (Bo, BT) F 0 • (C, D) D = 0

F

which establishes (27) for the constructed F's.
I \

Moreover rank of /Fo_ •

_)FT

<<:)rank ot F 0 - rank of D (; , which is surely n, if, and only if,

- F G

G is chosen to be non-singular. To see this, notice that any homogeneous

linear relationship between the colunms of G holds also for the columns of

C'IDG.

Suppose now we had two pairs FO) FT) and FO, F T such that

o. ,,o_,,o,,o,,
\ ]FT \irT/

equal to n. Then the same permutation applied to the columns of (Bo) B T)
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and to the rows of

(Bo, BT)/F0_= 0 and

\-_.]

= C'ID_. Since both

_-FT/ ,-G,
These can be satisfied only by taking E , C'IDG and

both G and _ must be non-singular, tience _ = EK, where K = G"1 _.

Since also _ • (;Kj we see that

(:)
mentioned leads to the result that

where K = G"l _ is non-singular. This establishes the last statement of the

lemma.

A continuous vector function x(t) defined on [0, T] will be

said to be _ admissible if x(O)F 0 * x(T)F T = 0, where the F's

satisfy the conditions expressed in hemma 5. As a consequence of this lem_a
it makes no difference as to which particular F's are chosen. A change in the

F's only amounts to replacing the last written equality by the equivalent

relation [x(O)F 0 + x(T)F T ]K • O, where K is non-singular.

Theorem 4. The rows of E(t) are adjointly admissible. In other words,

(28) E(O)F 0 • E(T)F T - 0 .

Proof. %_e note from (9) that _BTX(T ) = -_LBoX(O ). ltence, from (14),
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-=(0) - (_BTX(T)X(0)'I - - _tBoX(0)X(0)'I - - O_Bo, so that

(29) z(o)-- OLB o .

Also, form (14), it is obvious that

(30) -:Ca) - • OIBT •

lien(e, from (29) and (30), we see that _(0)1:0 ÷ _(T)F T - -O_BoF 0 - BTFT),

which, by Lemma 3, must vanish. This establishes (281 and finishes the proof.

Theorem 5. The rows of E(t) constitute a complete set of linearly

independent adjointly admissible solutions of the homogeneous linear system

(311 a_/dt • - _ A(tl

which is adjoint to the system dx/dt - A(t)x,

Proof. It is well known that the rows of X(t) "I satisfy (31). Since the

rows of _(t) = (_BTX(T)X(t)'I, cf. (14), are merely linear comb in at ions of

the rows of X(t) "I, the rows of _(t) must also satisfy (311. In Theorem 2,

it was proved that the k rows of _(t) are linearly independent; and, in

Theorem 4, it was proved that the rows are adjointly admissible. Hence

Theorem 5 will be completely proved as soon as it is shown that k is the

maximum number of linearly independent adjointly admissible solutions of (31),

This is most easily done by noting that the relation between a system and its

adjoint is a reciprocal one. The adjoint of the adjoint of a system is

obviously the original system. The same may be said about admissibility and

adjoint admissibility. A vector function which is adjointly admissible

relative to the adjoint boundary conditions is admissible in the original sense.

llence, if there were k' (> k) linearly independent adjointly admissible

solutions of the adjoint system, Theorems i-4, applied to the adjoint system

with adjoint boundary conditions, would tell us that there would have to be at

least k' linearly independent admissible solutions of the original system

dx/dt - A(t)x. But we already know that there are just k of them. qhis

completes the proof.

III. BIFURCATION EQUATIONS

Our method of solving the problem formulated in Section I involves the

preliminary solution of the system of integral equations
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(321

T

xCt, c, _) - xct:_c • f
0

G(t, s)f[x(s, c, u), s, u]ds .

for the unknown function x. The solution will depend not only on t but

also on the parameter u and the k-vector c. Since G is bounded and the

partial derivatives of f with respect to the components of x are contin_mus

and vanish when x and _ do, it is almost self-evident that the following

system of successive approximations

Xo(t, c, ,) " XCt)_c

• , , , , , , • • , , °

T

Xm(t, c, u) - x(t)_c • f
0

C;(t, s)f[xm_lCS, c, u), s, u]ds, m & 1 .

must, if Jul and IJcll are sufficiently small, converge uniformly to a

solution x(t, c, _) such that x(t, O, 01 = 0. Further details of the _roof

are indicated in a previous paper, The Role of First Integrals in the
Perturbation of Periodic Solutions, Annals of Mathematics, volume 63 (1956),

pp. 535°548 m especially p. 545. Although in this previous paper only periodic

boundary conditions were considered, the proof in the present more general

case (in so far as it concerns the existence of solutions) is exactly the same.

The main feature is that f must be Lipschitzian with arbitrarily small

Lipschitz constant, if IV[ and Ilxll are sufficiently restricted, because

of the above mentioned properties of the partial derivatives of f. Assuming

then that equation (32) is solved and that the solution is continuous (as it

would have to be because of the uniform convergence of the continuous

approximations), we are in a position to proceed to the next theorem.

Theorem 6. Let x(t, c, _), where c is a k-vector, be a continuous

_of (32) such that x(t, O, 0) _ O. Then

(33) BoX(O , c, U) ÷ BTX(T, c, U) = 0

and x(t, c, u) will satisfy

(341 dx/dt = A(t)x ÷ f(x, t, U) - H(t)a ,

wh_rethe relationship between II and G is as in Theorem 3 and where the

vector a is given in the following formula:

T

(35) a - a(c, U) = C "1 f E(t)f[x(t, c, _), t, u]dt •

0

k-
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Proof. Let f(t) - f[x(t, c, _), t, _] - It(t)a(c, _)

T T

.'. / _(s)f(s)ds - f _(s)f[xCs, c, _), s, _]ds
0 0

T T

- (/ E(s)H(s)ds)C "1 / _(t)f[x(t, c, _), t, u]dt

0 0

T

• 0 since C - / E(s)H(s)ds as in Theorem 3.
0

Hence the condition (7) is satisfied by the above defined f(t). Hence the

second term on the right of (32) satisfies (34) and is also admissible. Thus

(337 is also satisfied. The first term on the right of (32) satisfies

dx/dt = A(t)x and because of (10) also satisfies (53). It is evident then

that the sum x(t, c, _) must have the stated properties.

It is clear from the theorem just proved that, if c = c(_) can be

chosen as a function of _ in such a way that

(30) aCc, _) - o ,

then the differential system satisfied by x(t, c(_), _) is the system

dx/dt • A(t)x ÷ f(t, x, u) obtained from (34) and (36). Since the given two

point boundary condition is also satisfied because of (33), it is seen that

this x(t, c(u), _) solves the problem formulated in Section I.

Thus the problem has been reduced to the problem of solving the system

(36) of so-called bifurcation equations. This is generall Z very difficult.

But, in case the differential equations admit some first integrals the

bifurcation equations can he put into another form. We investigate this

procedure when the number of first integrals is just equal to k.

Suppose that ¢[x, t, u] is a k-vector, each component of which is a

first integral of the system dx/dt - A(t)x * f(x, t, _). Therefore

Cx(X, t, c, u)[A[t)x ÷ f(x, t, _)] * Ct(x, t, _) E 0.

Letting x • x(t_ c, _) and then integrating we get

T

f CxCX(t, c, V), t, c, V)[A(t)x(t, C, U) ÷ f(xCt, c, U), t, U)] dt ÷
0

/T CtCxCt ' c, U), t, v}dt - 0.
0
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On the other hand we have by the fundamental theorem of calculus

$[x(T, c, _), T, _] - ¢[x(0, c, V), 0, V] •

T T

f exCXCt, c, v)xCt, c, u)dt ÷ f
0 0

Hence, by subtraction, we find that

_t(x(t, c, V), t, _)dt.

¢[x(T, c, _), T, a] - ¢[x(0, c, V), 0, V] •

T

• f ¢x(X(t, c, V), t, _)[x(t, c, _) - A(t)x(t, c, _) - f(x(t,c,_),t,_)]dt
0

T

- - f ¢x(X(t, c, _), g, g) H(%) ¢(C,_) dt by (54) .
0

We suppose that the components of _(x, t, _) are independent first

integrals at least for the solution x(t, 0, 0) - O. This amounts to assuming

that the k x n- matrix __(0, t, 0) has rank k. It is natural therefore to

dispose of the arbitrariness of the n x k- matrix H(t), introduced first in

Theorem 3 and used again in Theorem 6, by setting its transpose equal to

ex(0, t, 0), at least provided that

T

c = f _(s)H(s)ds
0

turns out, for this choice of |I, to be non-singular. Since therefore

ex(0, t, 0) = If(t)' and since

T

f }t(t)' ll(t) dt

0

is obviously positive definite so that it is, afortiori, non-singular, it is

seen by continuity that the matrix

T

f ex(X(t, c, U), t, _)H(t)dt
0

must also be non-singular for sufficiently small Ilcll _d [_1.
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It now follows from the last equality that the so-called "bifurcation

equation"_ a(c, _) - 0 is equivalent to the equation

$[x(T, c, _), T, v] - $[x(0, c, _), 0, _] - 0 ,

at least if llcll and I_I are sufficiently smart.

In the periodic case where ¢(xe t, _) _ ¢(xp t ÷ T, U) and

x(O m c, _) - x(T, c, U), the above result shows that the bifurcation equations

are identically satisfied. But this happy circumstance apparently need not
occur in general.
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SUMMARY

The derivatives of a function of a function have been automatically

computed applying the recursive Schl_milch-Ces&ro formulation. Tables

given for this purpose in collections of mathematical formulas were thus

extended up to the eighteenth order.

Then, the general expressions thus obtained were used to construct

the power series expansions in the time variable of those powers of the

radius vector which appear most frequently in celestial mechanics,

namely, the force function, the force of attraction, and the derivatives

of the force function with respect to the coordinates. These last expres-

sions are given in terms of the radius vector evaluated at origin and the

triplet of Stumpff's local invariants. The explicit expressions of these

series were symbolically computed using the FORMAC language.

INTRODUCTION

The need to compute the Taylor series expansion of a function of

a function arises frequently in celestial mechanics. Even though by the

standards of this discipline the computation of such series is an ele-

mentary problem, there is no doubt that its actual computation, if carried

out by hand and to a high order, can be very tedious and time-consuming.

This seems to be a case, therefore, where a computer programmed to

perform symbol manipulation could relieve the scientists of this heavy task.

We present here, first, a general algorithm given by Schl_milch and Ces_ro

to compute the derivatives of a function of a function in a recursive mode.

* This report presents part of the work being performed under contract

NAS lZ-87, "Automatic Symbol Processing Techniques."
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Ill
This algorithm was programmed in FORMAC and was used to

compute the derivatives up to the order n = 18. Then, these general

results were applied to obtain the expansions of r-k(t), where k=l,Z,3.

FA_% di BRUNO'S FORMULA

Let

(1) u(t) = u_ v(t) ]

be the function which we want to expand in Taylor series:

(z)
1 t n t nU : _ : C n

O= I d t n t=O =0

Then, the goal of the computation is to obtain explicit expressions for

the coefficients c . For small n they are
n

(3)

du dv ]c| = dv dt

t=O

c z =
dv _ + du dZv

1 FdZu (dt] dv ]

Z-_ L dv--_ " d t 2 t=0

c3 = 3TLdv3 dv z dt dt z + dv dt 3
t=O

and it is immediately evident that the amount of work required to obtain

higher order derivatives increases rapidly with the order n.

In spite of the complexity of this process, Fa_ di Bruno [Z ] has

given an elegant and concise formula for the n TM derivative of a function

of a function:
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(4)
dn___u =

n! dPu (_.ll dv_/ 1 dZv_ dtv kV
i' j! .k' _-)\ Z dtZ ]''" (l_ --)d t n _ " " dvP ! dt t

where the summation sign extends over all the integer solutions of

(5) i+ Zj + ... + tk=n

while, simultaneously, it is:

(6) i+ j + ... +k= p.

The compendiousness of (4) makes it very adequate for theoretical

work, for instance, to establish bounds, but it has little practical value

for the actual computation of explicit expressions, particularly when high

order derivatives are required. In effect, the most extended tabulations

that can be used for this purpose, namely, those of the _r- and M3-numbers

in table (Z4. Z) of a well-known collection of mathematical formulas E3 ],

give these numbers up to n = 10, while in two different applications to specific

problems of celestial mechanics by Musen [4] in perturbation theory and

Szebehely [5 ] in the restricted three-body problem, it has been found

necessary to compute these explicit expressions up to n = 8. It seems

likely that in future investigations a much higher order of approximation

might be required.

SCHLOMILCH- CESARO'S FORMULA

For n>10, then, there is no way of avoiding a lengthy and tedious com-

putation. This appears to be a case in which a computer, adequately

programmed, could take the burden of the long literal developments thus

relieving the mathematician from this uninteresting task.

While reviewing old and new mathematical literature on the subject of

high-order derivatives of a function of a function, we have found a re-

cursive procedure which adapts itself very well to being programmed in
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FORM.AC. We will call it the Schl_milch-Cesaro formulation

[6]
because it can be found in the mathematical works of both authors .

According to this method,

(7) dnu = _, D 1_

dt n _- 1 _ n,

where

d_u

(8) D =
v d v _

and P is a polynomial in the powers of
n,V

d I v
(9) a. = --

dt

Now, it is easy to establish the following recursion formula:

d

(I0) Pn+l,v = --dt Pn,v + c_1 Pn,v- I (9= I, Z ..... n+l)

which should be supplemented by

(II) Pn+l,O = O, Pn+l,v = 0 (v) n+l).

Noticing that for n = 1 there is only one polynomial

dv

PI,I(IZ) = al = dt

we obtain successively for the first five orders:
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P2, 1 = c_z

2

P2,2 = G'I

(n = 2)

P3,1 = a3

P3,2 = 3al CL2

3

P3,3 = al

(n = 3)

(13)

P4, 1 = c_4

P4,2 = 4aI_3 + 3c_:

IZa (n = 4)P4, 3 = 6a 2

4

P4,4 = al

P5,1 = a5

P5,Z = 5&l&4+ i0_2&3

P5,3 = 10c_ c_3 + 15_IC_ 2

P5,4 = 10a?a2

P5,5 = a5

(n= 5)

This procedure has been used to generate P up to n= 18,
n,_2

at which value the numeric coefficients become too large to be computed

in exact integer form. The polynomials for the first ten orders were

[3]
checked against the above mentioned tables and were found to be

identical. _ As examples of the extension of these tables, we present

Jordan [7] gives the number of terms in all the polynomials Pn v

using Netto's notation F(In). In the table on page 155 of reference [7],

F(fl0) is given as 43, while our results and those of reference [33

indicate that the number of terms is 42.
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in the appendix the polynomials Pll,v and PIZ,v"

It is worth mentioning that these polynomials have a remarkable

property: the sum of the coefficients is equal to the Stifling number

of the second kind S (u). Thus, in the process of generating these
n

polynomials, one also generates, as a by-product, the Stifling

numbers.

APPLICATIONS

The method expressed in formulas (7) through (13) can be advan-

tageously applied to computations frequently occurring in celestial

mechanics. We show here with some detail its application to the

construction of the time power series for the inverse square of the

radius vector in the Keplerian motion along any conic section. In

this case, r is a function of t through the Cartesian coordinates x,

y, z. We take

1
(14) u =

rZlt)

Then, we have

dVu (_l)V (_+I)!(15) -- =

D) dr V r_)+ 2_

Introducing Stumpff [8 ] local invariants /_ , (I, ¢

• [9]
expressions for the time derivatives of r(t):

we have the following

(16)
Ct 1 = r 0 o

o z
a z = ro(- + { )

* Polynomials of higher order ( n ( 18 ) can be requested from the authors.
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(16)

ct 3 = ro( 3o 3 - o_ - 3oE)

Z 2)
c_ 4 = r0(-15o4+ 7oZ_+ 18o E -/_c - 3c

Ct5 = r0(105o5 _ 60o3 _ 150o3c +_ Z + 450
Z

+ Z4/_oc )

where r 0 is the initial value of r.

The polynomials P can, thus, be expressed in terms of the
n,_2

triplet /_, o, e substituting (16) into (13). Then, taking into account

(15) it is easy to obtain

(17)

i(du)
0 r 0

1 __dZu ) _(4oZ= - E )

_. ( dt z r 0

1 d3u 1 03 1

• dt 3 r 0

1 d4u 19
4-_(--) =q -1 <1604- T_-oZ/_ - 1ZaZ_ + 1-1-_, + ¢ 2)

dt r 0

1 'd5u 05 _ o3_ + _----_o_2+6o_ z _--_poe).

_- k_t 5 )= - r_ (3Z - -- - 3Zo3_ + Z3

Expressions for terms of higher order are presented in the appendix,

together with the corresponding terms for the inverse and inverse cube

of the radius vector. .%11 these expressions were produced by a single

FORMAC program. The numeric coefficients were computed in exact

form using rational arithmetic. These computations were truncated at

n = 14, because overflow occurred while generating the numeric coef-

ficients for the following term. These same computations have also been

performed in floating point form; in this case it is possible to compute
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the first twenty terms of these series. The expansions of any

power of the radius vector could be obtained using this program.

-Z
The time power series for r can be used to obtain directly

the true anomaly through the integral of areas for any value of the

time within the radius of convergence. The series for r -I and

-3
r can be applied to obtain the power series solution of the three-

body problem in the time domain.

The series for r -2 has also been applied [I0] to the computation

of ephemerides in the case of nearly parabolic orbits.

2.

3.

4.

5.

6.

7.

8.

9.
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APPENDIX

Table 1

Polynomials P11,

Pll, I =

PII,2 =

Pll,3 =

Pll,4

Pll,5

Pll,6

C_
11

11&iCtlO + 55C_2& 9 + 165&3& 8 + 330&4C_ 7 + 46Zcts& 6

Z

55&1& 9 + 495&l&zC_ 8 + 13ZOC_I&3C_ 7 + Z310&iCt4& 6

+ 1386&i _Z + 990&Zc_7 + 46Z0c_Zc_3_ 6 + 6930<_2a4_ 5

Z Z

+ 5775ct3c_ 4 + 46Z0&3& 5

Z 2

3 1980aglaZ&7 + 46ZO&l&sCt 6 + 693Oaf&4&5165_i& 8 +

Z Z Z7720 C_IC_f9 5+ 173Z5(ZI&Z& 4 + 6930&lager 6 +

_& Z 15400&2c 33Z + 34650&Zc_3c_ 4 ++ Z31OOcLI&3& 4 + 6930& 5

4 3 9Z40_ict3_ 5 + 5775_i_4330&l&7 + 46ZO&ICtZCL6 + 3 3 2

2Z 23

Z 20790&ic_Zc_ 5 + 15400&ic_3+ 69300c_ic_Zct3& 4 +

gZ 3 4

+ 69300_I<IZ0_ 3 + 34650_IO_Z_ 4 + 17325_Zc_ 3

5 4 4 Z 5 Z
462&ic_6 + 6930&I_Z& 5 + l1550Ctl&3& 4 + 46 00&Ic_Z_ 3

31&2_ Z3 5+ 34650& 4 + 69300&I&Z_3 + 10395&l&Z
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P
11,7

1=
11,8

6 5 5Z 4Z

46Z CClC_5 + 6930o_16264 + 46ZOC_IC_ 3 + 34650CLI6zCt3

+ 17325 _C_ 4

7 6 5 3

330 CLIC_4 + 46Z0 (_i(_263 + 6930 _l_Z

PII,9 = 1656_63 + 990ct17_

9

1=11,10 = 55 6 la'Z

11

1=11, 11 = 61

PIZ,I = 61Z

PIZ,Z

PIZ, 3

IZal_ll + 66 62610 + Zg06369 + 495a46 8 + 79Z 65a 7

Z

+ 462 6 6

Z

6661cL10 + 660cL16Z69 + 1980c_1c_368 + 396061a4a 7

Z

+ 5544a165cL 6 + 1485c_Za 8 + 79Z0_26367 + 8316ccgcL Z

Z Z77ZO _3ct4a5 + 5775 o.3+ 138606zCt466 + 9Z40ct366 +

204



HIGH ORDER TIME DERIVATIVES OF POWERS OF THE RADIUS VECTOR

P12,4

P12, 5

P12,6 =

P12,7 =

3 Z 2 1 Z
ZZOCtlCt 9 + 2970CtlC_Zct 8 + 7920CtlCt3Ot 7 + 3860_ic_4ct 6

Z2

+ 8316c_ict 5 + 55440CtlCtZo.3ct 6 + 83160CtlCtzct4ct 5

2 Z 2

+ l1880(XlCtZ(x 7 + 55440CtlCt3Ct 5 + 69300CtlCt3Ct 4

cL_ct 2 22* 13860 6 + 83160c_2c_3cL5 + 51975c_2c_4

2

+ 138600 c_2c_3c_4 + 15400 c_

3495¢8* 7920%,, 1848o¢e6 277z0 1 4 5
2 22 2 2

+ 166320 c_1c_2c_3c_5 + 41580 c_1c_2_ 6 + 103950 C_lC_2c_4

22 _ Z
+ 1

38600 ctlct3ct4 + 184800 ctlct2ct3 + 415800 CtlCtzCt3Ct4

3 4 3 2

+ 83160 Ctict2ct5 + 51975 ct2c_4 + 138600 ct2ct3

5 4 _792_i_7 + _3860_i_2%+ 2772063% + 17325_24

32 3
+ 83160 CtlCtzCt5 + 277200 CtlCt2a3ct4 + 61600 Ctl3__

222 23 4

+ 415800 c_lc_Zc_3 + 207900 C_I_Z_.4 + 207900 C_1_.2C_3

6

+ 10395 ct2

6 5 5 4 2

924c_1c_ 6 + 16632C_1C_ZCL 5 + 27720c_1c_3cL 4 + 138600CtlCL2c_ 3

42 33 25

+ 103950CtlctzCt 4 + 277200CtlCtzct 3 + 62370cti(I z

205



HIGH ORDER TIME DERIVATIVES OF POWERS OF THE RADIUS VECTOR

P1Z,8 =

52

6 Z + B3160 c_I_Z_3

79Z_i &5 ÷ 13860c_ Z_4 + 9Z40_la3

44

+ 51975 ala Z

8 7 63

Ctl_tZct 3 + 13860 &laZ= 495ala 4 + 79Z0
P12,9

P1Z, IO =

9 8Z

ZgO&lCt 3 + 1485ala Z

10

PIZ, II = 66_i aZ

IZ

PIZ,IZ = al

Table 3

i .-(,_)
= n! r

Cn d tn

1

r

1 _ 15 Z 3 B 5 35 )
-- I _ E - _ Z + 04T__ - W,o + _ -_

z 63 _)
35 3 15 7 3 1_

I_ <_ _0,, o + -_-_o - -_ _Zo + _-,cr - o - _'-
r
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1 ' 2/ 2 ¢ 2 315 4 3 2 105 2 Z

luvw_a - v-_F _ - lo-V7-'_ - _F_ _ + TF-_ a7

5 3 35 4 7 22 231 6"x

7F_ - -_-_o + _6-_a + -i%-

1 _ 59 3 27 Z 693 5 459 Z

7 _--_-_ + 5--_ _a + -Tg-_° + 5-_ _'_

315 2 3 35 3 165 5

I--6-_ _ + T'6_ a + T_ _ -

3

7 2 3 g--_---a
/_ o + 5040

429 7

8 l / 2871 4 195 2 2 _ 3 3003 6
r _ --_-8 _B_ _g + -- _0-- 448 _ _ 32

4131 2 2 27 2 2 3465 2 4 459 3
- 89--T_ .o + 4-T_ _ + -FT-_ a + 4--_%-_

315 3 2 35 4 3003 _a6 + 209 /2,4 17 3 2- 3--z-_ _ + _ - Iz---T _ 2688_ a

6435

+ -TE-E a8)

1 ( 1001 5 1199 2 3 _ 6435 79 7 - -YE -_ + 3-EE _a 3-EG 3 + 3T -_a

4345 Z 3 929 Z 2 9009 2 5 635 3

+ _ e #a 6720 _ # a - _-_ e _ - 50---_ #o

I155 3 3 315 4 5005 7 I001 2 5
+ -_ _ a 128 _ + --_--_ _ 192 _ a

4

11 3 3 _--------_a 12155 9 )+ l-_-# a - 362880 - 12-----'8- °

10
I / 79079 6 1287 2 4

4 109395 8

3628800 _ 256 _o

4939 3 2

+lO-"_"_a

4433 2 4 28479 Z Z 2

64 _ go + Z--_-_ /_cr
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Z
, 3 45045 2 6 1397 3 2 929 3 2_

3600 /_ + _ _ o + _ .o - 67Z0------_c.

15015 3 4 127 4 3Z_65 4o2 63 5- IZ-----_ ' o - -- _ _ + -- - --1008 Z56 _

7293 8 29029 2 6 143 3 4

- 6--7-_o + 1--_-_0 - 4-_.o + --

46189 I0

+ _ o

341 4 2

IZ09600 _ o

n Cn = -- --

Table 4

1 d n

n n(_-)
dt r

g

Z a
r

I o2. )
r

i< .--_- 4c0 + _O - 8
r

1 ( E Z Z 19o2 04)-_ _-_p - 12_0 + , - _- + 16
r

I( 23 o3 21 3 2 )-_ - _-_ c_0 + 32c - 6_2o + -_-_o - _-_o- 32o 5
r

1 ! 127 2 c 2 4 23 Z + 24 2o2-E(-E_,.o _. - 8o,o - 1-_
r

_ 3 359 04 79 ZaZ )Z4 p + _ + 6406
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l ( 1523 3 17 2 25 697 g
_- ---6--_-_a + 1-_-6-_ a + 19z, + z--_,,a

r

3
941 5 77 2 3

- 80EZe 3 + 8_3a + -_-_a - _-_-_ a + Z---_.-_a

1 ( 27441 4 9 Z 2 ¢ 3 6

r

35709 Z 2 17 2 Z ¢Za4 697 3
2240 _ _a + _ _ + 240 + Z--Z_-_

40¢3a2 + 4 6241 6 867 2 4 319 3 2
64 ,uo" + _ _ a 20160 _ a

256 a 8 )

1 / 16721 5 1781 2 3 421 3

2 _ 64 ¢ _a + _ ¢ _ a 60480 ¢ _ _

100091 Z 3 275______3Z Z Za5
+ 1024 _a 7 + 1--_¢ _a 6720 _ _ a - 672¢

17609 3 3a3 4 449Z3 7
4032 ¢ _ = + 160¢ - I0¢ a + _ #a

4

3679 Z 5 2047 3 3 _ g g9_
192 _ o + _ _ _ 512 )181440

lO 1 _! 2227 , 6a 166641 2 4 14429 3 2-_ -'7 4480 ¢ _ a + _c _ a
r

4

¢_ _ 2304_ 8 130073 c2 _4
1814400 448

286877 2 2 2 421 2 3 2 6

+ 67---7-_-6-6-¢U a 60480------_ # + 1792c a

2 2753 3_2 3 4 17609161377 E3_a _ - 560_ a - __¢4_
+ _ 67200 40320

+ 60 402 5 210029 /_a8 7759 206
- _ 384 +
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130973 3 4 1279 4 2 al0 )120960 _ o + 1814400 _ o + 1024

Table 5

1 d n / 1

Cn = n_ dt n '\ 73 )

3

- --_-o
r

l 33(- + o2
r

353)-y Eo + 2_e- Te
r

1 ( E 105 2 152 23 2 315041-Y _ - -T-_° + %-E - _-_o + -F-
r

2

1 ( 21 315 3 105 2 _ ,
"-_ \ - ]-_,_/ao + --¥-EO - --_E o + 1Dao 3 _- o
r

t (107 E 2 3465 4 7 2-_ -_ - E_°2 - 24---'0 _ 16 Eo - _-_c
r

945 35 3 _ 28__! 4 19 2 2 3003 6
+ T _-E2°2 - ]-6_ 8 _o + _ o + -i-_o /

1 ( 479 123 9009 05 589 2- --_--E_a 3 + 5--%-_-E_20 + _E + 1-]--_- E o
r

3465 2 3 315 3 1619 5 127 2 3

- 1_ E o + "y_--E o + _ _o - 4"-'8- _ o
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3
6435 7 \

+ ]y_a - _-G-a )

l / 28437 4 5967 Z 2 c 3

_ 1-Fr_-_a zz4o _ _ a + _
r

45045 6 33801 Z Z 1Z3 Z Z

- --_a3Z - --E_g896 + 4---4-_ ¢

45045 2 4 589 3 3465 3 Z 315 4

+ _ a + 8-_-_ - 3--y-_a + 1-y_c

_ 3491._.___36 1593 _ 383 3 g 109395 a8 1128 + _ Zg4 13440 _ a +

l / 46925

9 3 _ 64

5 881 Z 3 253 3

E_ a + -_ # a - 2016-------0_ _ a

109395 a 7 12385 2 3 5717 Z Z
3Z _ + _ #a - 672-----__ g a

135135 2 5 13915 c3a + 15015 3 3 3465 4
64 _ a 1344 _ c a - 1---_E

4

44923 7 9253 2 5 599 3a3
+ _a 192 # a + _ 120960

230945 a9
128 )

I0 1 ( 1429381 6 60161 Z 4 11863 3 23 640 _ga - 64-----_-_ # a + _ _g a
r

4 2078505 8 104575 2 4

1209600 _ Z56 c a IZ8 _ _ g

Z215 g 2 Z Z53 Z 3 765765 Z 6

+ -_- _ _ a 201600 _ _ + _c

32017 3 Z 5717 3 Z 225225 3 4 Z783 4

_ _ a 67Z0------0_ g iZ8 c a - _

45045 4 Z 693 5 II17Z5 a8 158291 Z 6
+ z--%-_ a - _-_ - _ + _--Tg_--_o

787 3 4 307 4 Z 969969 alO
- 3z---__ + _ _ + z56 )
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SUMMARY

In this paper semi-analytical results are presented for the long-term

behaviour of close lunar orbiters. The Moon's aspherical gravity field is de-

scribed by spherical harmonics through J4,4 and the Earth is idealized as mov-

ing in a circle in the lunar equatorial plane. After the short- and medium-

period terms have been removed from the Hamiltonian, the long-period motion is

analyzed from equi-energy trajectories in the eccentricity-argument of peri-

center plane. Stationary, or resonant, solutions to the slowly varying equa-

tions of motion are determined numerically and the results presented as varia-

tions of (critical) inclination and eccentricity with semi-major axis. These

computations are based on two sets of preliminary values of the lunar harmonics

Jn,m recently published by sources in the United States and the Soviet Union.

Representative equi-energy contours are presented to illustrate the evolution

of the long-term motion as influenced by orbital inclination, semi-major axis

and the parameters Jn,m. Many stable orbits, in the sense of not impacting the

Moon, are found even for high inclinations.

Introduction

In the analysis of near-earth satellite motion the dominant perturbation

is the oblateness J2, of 0(10"3) $, with all other (gravitational) perturbations

of at most 0(10 "6) ........ d order in J2" A .... be shown(l), to first order

the Hamiltonian contains only short-period (periodic in the mean anomaly) and

secular terms. These characteristics allow an analytical solution by succes-

sive approximation wherein, to any desired order of accuracy, the equations of

motion are reduced to trivial quadratures.

This situation changes significantly when we consider the motion of a close

lunar orbiter. The ratio of the mass of the Earth to the mass of the Moon is

roughly 81 to i. Consequently, when the orbits of a lunar orbiter and Earth

orbiter are geometrically equivalent, the perturbation of the Earth will affect

the lunar satellite 812 times stronger than the Moon will affect the orbit of

the Earth satellite. From the early lunar orbiter flights it is known that the

oblateness of the Moon is of 0(10 -4) and that the higher harmonics Jn,m in the

lunar potential may be as large as 0(10"5). Hence, neither the Earth influences

This work was performed in association with research sponsored by the National

Aeronautics and Space Administration under Research Grant NaG 133-61.

W_The research was performed while the author was at Stanford University and is

a part of his Ph.D. Dissertation.

The central force field is taken as 0(I).
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nor the higher harmonics are of second order in J2" In fact, as the semi-major

axis of the satellite increases above two lunar radii, the Earth influences ex-

ceed, and eventually dominate, the oblateness effects. The result is that the

variable part of the (slowly-varying) Hamiltonian is factored by small para_

meters of (roughly) the same order of magnitude so that successive approximation

schemes fail. Nevertheless, several of the approximation steps may still be

taken and then many significant features of the long-term motion extracted with-

out actually integrating the equations of motion.

In modeling the lunar orbiter problem, I will make the following assump-

tions:

The Earth moves in an apparent circular orbit in the lunar equatorial

plane; the actual apparent orbit is inclined about 6°41 ' (±9') to the

lunar equator and has an eccentricity of about 0.055.

The Earth is spherically symmetrical and hence can be represented by

a point mass.

The lunar gravity field is described by spherical harmonics through

J4,4; at the time of this paper no estimates of the higher harmonics

were available.

Solar radiation pressure and solar gravity field effects can be ne-

glcted.

The physical librations of the Moon can be ignored.

Since for close orbiters the negleet£_ terms contribute small O(10 -7 ) perturba-

tions or less, the following analysis should provide the correct gross behaviour.

The only exceptions might prove to be the third and fourth assumptions; radia-

tion pressure probably significantly affects the results if one considers orbit-

ers of very high area-to-mass ratio, for example dust. The other, more general_

invalidating factor might be the higher zonal harmonics Jn, n _ 5.

Long Period Equations of Motion

In keeping with the assumptions on the apparent Earth orbit, I will take

the reference plane to be the lunar equatorial plane with the zero-meridian to-

ward the Earth. In terms of luni-centrie coordinates the potential field of the

Earth is expressed as follows

-- + _ p2(s)] (1_

where _E is the gravitational constant of the Earth. r E is the (constant) luni-

centric distance to the Earth, s is the direction cosine of the luni-centric

angle between the satellite and the Earth, and P2 is the second Legendre poly-

nomial. The direction cosine s "can be expressed in terms of orbital elements

s = eos(u + _) - D E) - 2 sin 2 i/2 sin u sin(D E - _)

where _ is the longitude of the ascending node, _E is the mean longitude of the

Earth, u is the central angle and i the inclination.

216



LONG-PERIOD BEHAVIOUR OF CLOSE-LUNAR ORBITERS

Following the device of Kozai (2) , I define a set of modified Delaunay vari-

ables as follows:

L = _ a

G = L_I - e2

= mean anomaly

g = argument of pericenter

(3)

H =G cos i h =_- _ E

where _,g,h are canonically conjugate to L,G,H and e,a are the eccentricity

and semi-maJor axis respectively. The associated Hamiltonian is

2

= - _ - nEH + _ + V E (4)
2L n,m

n,m

where n E is the (apparent) Earth mean motion. The term _ _ incorporates
n,m n,m

all of the lunar gravity anomalies described by the gravity coefflcients Jn m"

The complete explicit form for all n,m is not of direct interest here; Jr'may

be found in gels. 3 and 4. Under the assumption that the Earth orbit is circular

and in the lunar equator, no angular variables other than _,g,h appear in _.

Inclusion of Earth eccentricity and inclination would introduce angles such as

the node and the argument of pericenter of the Earth orbit.

In general, the Hamiltonian (4) will contain the following types of terms:

a) secular terms, depending only on L,G,H due to even zonal harmonics and the

Earth, b) long-period terms (periodic in g) due to all zonal harmonics and the

Earth, c) medium-period terms, with periods of a month or fractions thereof,

arising from the tesseral harmonics and the Earth, and finally d) short- or _-

periodic terms from all sources. For the present problem the short- and medium-

period terms may be removed from the Hamiltonian via the yon Zeipel method(l).

The process will not be given here, since it is algebraically involved, although

straight-forward, and may be found in Oesterwinter[ 5) and Giacaglia(6). It may

be noted here, however, that the referenced results are incomplete in view of

the presently estimated magnitudes of the higher Jn m [ 0(10-5)]" In the quoted

papers only the J2' J2,2 and Earth short-period and'only J2,2 and Earth medium-

period terms were specifically determined. For the present purposes, I assume

that all of the short- and medium-period terms have been removed leaving only a

slowly varying Hamiltonian.

In the literature, the roles of the canonical coordinates and momenta are

interchanged by considering the negative of the Hamiltonian, denoted by _,

and hence referring to _ as the Hamiltonian. I shall adhere to this (by now)

well-established convention. With the understanding that all elements are

slowly varying, the Hamiltonian can be written as (4):

= 2L2 + nEH + _ J2 L-_G 3 1 - 3 + _16 _ 5 - 3 3 _ -

+ 15(1-_2)(1- _2)]" 64G7L3_J4_6_ I (35 sin4i" 40 sin2i + 8)(1+ 3_)
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3 J 5

e2sin2ij l _ 3_ e sin i (i - 5 cos2i) sin g
cos2i )_ 5 (i 7

8G5L 3

o. I]15 _ J4 2 15 n_ L 4 G 2 H 2 2
- e - - - sin

sin2i(1 7 coJil * ---2--8._ 1 _--_/] g

(5)

In Eq. 5 the Kepler elements e and i have been used as a convenient shorthand

for the more involved canonical counterparts and the mean lunar radius R

1738 km has been taken as the unit of length.

Since _t* is independent of time, it is a constant as are L and H since

neither _ nor h appears in _t*. Thus we have a single degree of freedom

system described by the differential equations

= - _ (6)

:

Since the integral _t* = constant is also known, the problem, in principle at

least, is solved. The known integral could be used to eliminate one of the

variables and hence g,G would follow by quadrature. However, it can easily

be ascertained that the solution cannot be found in terms of known functions.

In the yon Zeipel treatment(l) of a near-earth orbiter whose inclination is not

to close to critical, the long-period fluctuations were removed from _f* at

this point by a (further) canonical transformation and the problem reduced to

trivial quadratures. Such a procedure fails in the present case as both the

secular and g-dependent parts of the Hamiltonian have (essentially) an 0(10 -4 )

multiplier. This can he deduced from (5) by noting that the multiplier of the

Earth contribution, containing secular and cos 2g terms, has the factors (nE/

n') 2 after division by g_/2L2; this factor is a quantity of roughly the same

order as J2"

It proves convenient for numerical calculations to introduce the parameter

and constants of the motion _,di, defined by:

, H 2

G (1 - e2) " _ _ (1 - e 2) cos2i (7)_=_= = =

and

J2(n,)2(22 = --
2a 2 _E

3J3()2(2 3 = -- n'
4a 3 _E

nl = ___q__ , the satellite mean motion.

L 3

218



LONG-PERIOD BEHAVIOUR OF CLOSE-LUNAR ORBITERS

(%4 = 16a4 (8)

which are dimensionless since R_ has been chosen as the unit of length. Com-

bining the constant parts (independent of g and G) with _ and some alge-

braic manipulation yields the "energy integral" in the form:

i i 35(1 - _n "2)
C = _2q-3(1 - 3_q "2) ÷ ¼(5 + 3_ - 6q 2) - _ _4 _'7

-40(i - _ -2) ÷ 8] (5 - 3_ 2) - 5(i - 7_-2)(i - q2)(1 - _-2) 1

i5 (i- 2)
-_3q-5(1 - _2) _ (1 - _'2) Z (1 - 5_ -2) sin g -

where

• (i . _q-2) [4(% 4 -7 (1 - 7_'2) + 1] sin 2g (9)

Lo J

2_ _

C = -_ .q'_ - -- - nEH

nEL 2L 2

The form chosen here is such that if (23 and (%4 are taken as zero, one re-

...... ( ..... tially) th ..... its of Kozai(2) .

The equations of motion corresponding to this energy integral are deter-

mined by differentiation of (5) according to (6):

i

1 6 1 _* 3% ] a3

-5(1 - n2)(1 - _n"2) --
4a5_ 7

(1 - n2)(1 - _5_]-2)]/; (1 - 5_1_ -2) cos g

4 a2](1- 7_n -2)+_ _in2g (10)

J2

,k 2 . 5_) +

a_

J3
- 63(_ 2 + 2_)n 2 - 231_ 2 ] +

J 2a4_ 5

2n_a 2 5J 4

-_ q - 12 [q6+ 7(2_ + l)q 4
32a5_

q
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__,_-_ r______1_
2 [1_,2j

t

[5"16 (56_5 + 7)'q 4 (63132 72_)rl 2 77_ 2 ] 5n2a2- + + - + _ (_ - rq 4)

_-(iq

+__"L-_ r_-_l_ I t _,/.2-_/ _ing+1sS2
l._ J I I

I i:::ll
Geometrical Solution

Since it seems highly unlikely that a general solution in terms of known

functions can be found to the system (10) and (ll), I will attempt to obtain the

general characteristics of the motion indirectly. From the known energy inte-

gral (9) it is possible to construct, with the aid of a computer, equi-energy

contours in the _2 . g plane for given values of the semi-major axis a and

(angular momentum) parameter _. The form of the contours is also strongly

dependent, for low a, o11 the values of the harmonic coefficients J2, J2 and

J4; as noted earlier these values are not very well known at the time oF this

writing.

From preliminary analysis of the U.S. lunar orbiter data $ the following

coefficients are available

J2 = -2.3691 _ 10 -4

J3 = 3.366 X 10 -5

J4 = -1.368 X 10 -5 (12)

Another (preliminary) set, as determined from the U.S.S.R. Luna lO flight (7)

is

J = -2.06 X 10 -4
2

J3 = -3.62 X l0 -5

J4 = 3.33 X 10 -5 (13)

The agreement as to the value of J2 is not too bad; the U.S. value is closer to

that determined from the physical libratlon of the Moon (-2.41 X l0 -4 ) than the

SResults presented at Guidance Theory and Trajectory Analysis Seminar, NASA

Electronics Research Center, Cambridge, Mass., June 1967, by W. T. Blaekshear,

et al. of Langley Research Center.
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U.S.S.R. value. As for J3' the signs are different, although the magnitudes

are fairly close, as is also the case with J4" In view of these facts both

sets of coefficients were used in determining typical "phase plane" (_2 g) con-

tours, thus in some sense indicating the sensitivity to, as well as dependence

on, the values of the J3 and J4 harmonics.

With the motion constrained to a given energy curve, by plotting _qui-

energy contours we can obtain the qualitative and quantitative 10ng-period be-

havior of g and eccentricity (or inclination). The time history on the con-

tours can he obtained very rapidly via numerical integration of (i0) and (ii)

for any contour of interest.

Before presenting some representative contours, note that for each value

of the semi-major axis there is a mKximum allowable eccentricity in order that

the radius of pericenter remains greater than the radius of the Moon. This con-

= a-i or in terms of _2
dition is simply ema x T'

2 2a - 1 (14)
_crit - 2

a

For convenience, this relationship is shown graphically in Fig. i. All equi-

energy contours in the q2 _ g plane are terminated at q_rit since the cross-

ing of the _rit line by any contour implies lunar surface impact.

In Figs. 2 through 7 typical _2 - g contours are presented; Figs. 2, 3,

4 were obtained using the Langley Jn values, Figs. 5 and 6 were obtained for

the U.S.S.R. values. In Fig. 7 the set of elements corresponding to the U.S.

Lunar Orbiter IV initial elements was chosen and the corresponding trajectories

were also computed via numerical integration of the long-period _uations of

motion. The numerical integration points are given at 30-day intervals to in-

dicate the relative rates of _2 g on various parts of the contours. The

maximum possible lifetime available for the parameters of Fig. 7 is roughly

3.5 years; the appropriate contour is indicated on the figure.

Inspection of the contours reveals several major features:

Stationary points with surrounding librating orbits where g is

constrained to vary between (some) limits.

Circulating orbits where g increases through 2;.

Impacting orbits resulting from either circulating or librating

orbits.

From these observations and Figs. 2-7, one can deduce that stable, or surviving

orbits are possible even for high inclinations if the initial conditions are

chosen (sufficiently) near one of the stationary solutions.

I will, therefore, defer sOme additional comments concerning the q2 . g

contours until the nature of the stationary solutions has been investigated in

the next section. Only stationary points for libration orbits are depicted in

Figs. 2-7; one might ask if there are any other types of stationary solutions

possible. Stationary, "saddle-type" points are also possible, but were found to

exist only for _2 less than _rit, i.e., under the surface of the Moon. An
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example of contours illustrating the different types of stationary points and

contours is given in Fig. 8. In this figure only the interval 0 ° < g < 90 c is

shown; the contours for -90 ° < g < 0 ° are similar but no____tsymmetrical about

= 0 ° .

Stationary Solutions

The stationary solutions are defined by _ = g = 0 and correspond to re-

sonances in the critical inclination sense, i.e., commensurabilities of the

anomalistic and nodal periods. In the near-earth satellite problem where J2

dominated all other perturbations, and hence the nodal regression rate, one

found resonance at the critical inclination of ±63.4 ° . As the seml-major axis

of the orbiter is increased and the luni-solar perturbation effects increase,

coupled with the decreasing rate of the node due to J2, one finds additional

resonances emerging. For example, in an investigation of high-eccentricity,

sun-perturbed orbits around Mars, Breakwell and Hensley(8) find eleven critical

inclinations (resonances), all above i = 40 _ . The analysis of Breakwell and

Hensley is inapplicable in the present case since it assumed that J2 of Mars

dominated the Sun perturbations, whereas in the lunar orbiter problem J2' J3'

J4 and (nE/n'_2 are all roughly the same for close lunar orbiters. Character-

istic of these resonances are the associated large fluctuations in eccentricity

and the inclination.

Digressing, we note that the physical reality of such resonances was per-

haps first verified by Explorer VI, launched August 1959, whose elements were

I = 47.1, a = 4.35 RE, e = 0.76, placing it very close to the critical in-

clination(S) of 46.4 ° . The original estimates of Explorer YI lifetime were

roughly 200 years without accounting for luni-solar effects; when these pertur-

bations were included, the lifetime dropped to 2 years (_). This lifetime

estimate was spectacularly verified by decay before July 1961.

Analytical or semi-analytical work on high-inclination, high-eccentricity

resonance phenomena has been almost nonexistent. Classical celestial mechanics

essentially ignores this problem since nearly all such orbit problems in the

solar system, excepting some asteroids and comets, are blessed with small in-

clination and eccentricity. Apparently some numerical-analytical work was done

by Liouville and Halphen. M.... (9)(10_ and Smith(ll) h ........ tly revived the

methods of Halphen, with modifications by Goriachev of U.S.S.R., and applied

them via computer to the Earth satellite problem when the luni-solar influences

are (relatively) large. In his initial studies, Musen found that the eccentric-

ity oscillated rather strongly in a large interval, going from large values to

zero and increasing again with accompanying inclination changes of as much as

20 ° (cf., Figs, 2-7). Such pulsating behavior of the eccentricity was also noted

by Kozai(12) in his studies of high inclination and eccentricity asteroids per-

turbed by Jupiter.

Let us return now to the lunar orbiter problem and the question of station-

ary solutions, or resonance points. From (10} one can readily see that _ is

always zero for cos g = 0 or g = ±90 ° , for all values of _2 and _. (To

help in relating statements about _2, _ to orbit geometry, one can think of

as "eccentricity" and _ as "inclination.") For a resonance condition we

must have g = 0 subject to sin g = ±1; this condition can be written as

- - J2a2n6(_ 2 - 5_) + 2xn 4 - --_C 1

222



LONG-PERIOD BEHAVIOUR OF CLOSE-LUNAR ORBITERS

(i5)

where

C1 = _S + (14_ + 7)_ 4 - (63_ 2 + 126_)_ 2 - 231_ 2

C 2 = 5_ s - (56_ + 7)_ 4 + (63152 + 72_)_ 2 - 77_ 2 (16)

C 3 = 4q 6 - (35_5 + 5)_] 5 + (35_ 2 + 41_)_] 2 - 40_ 2

274

r_a n

l.J.

Note that as e _ 0, rl 2_ 1 and tL_ behavior of the zeros of (15) is dominated

more and more by the J3 term. Conclusions concerning the behavior at e = 0

cannot be drawn from (10) since the variable g becomes undefined at--e = O;

characteristics of the zero and near-zero e behavior wiiI be examined later.

The next possibiiity is that cos g }/ O and hence _ = 0 implies:

-2J3a_3(q2 - 5_)

sing= 5[(1- n2)(q 2 - _)]l/2[J4('q2-7_, ) +4x] (17)

for e ¢ 0 and i ¢ O, (q2 = _). Substituting (17) is g = O, we find the

resonance condition

J3

[J4- [J4(q 2 - 7_) + 4x]a2_S(q 2 - 5_)C 3 + a2_6(_ 2 - 5_) 2 -_C 2

+ 4x(_ - q4)] = 0 (lS)

In relations (15) and (18) we have the parameters a and _ and ask for

the positive roots q2 _ 1 (if any). The implication of (15) and (18) is that

we no longer have the critical inclination problem in the usual sense, for now

the resonance or stationary solution depends on eccentricity as well as on in-

clination for a given semi-major axis. In addition, the argument of pericenter

is fixed at g = ±00 = or as determined from (17). In the usual critical in-

clination problem, as in the case of near-earth satellites, all perturbations
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except J2 are second order and hence the stationary solution, to first order,

depended only on inclination•

3i.u_ _h_ resonance conaz_lons are high-order polynomials in _2, they

must be solved numerically. Prior to discussing the numerical results, however,

let us first examine some special cases of the resonance conditions: a) when

the eccentricity is close to zero and b) when the semi-major axis is large.

As the semi-major axis grows, the Earth influence increases, until at some point

the Jn effects may be considered "second order" and hence dropped from the

equations. In doing so, the (long-period) equations of motion reduce to

15 (1 - _2)(i _ -2, 2 2
= - _-_ - p_ )nEa sin 2g (19)

• 3n_a 2

g : 3L---- _ [ (5_ - q4) . 5(_ - q4)cos 2g ] (20)

Thus _ goes to zero at g = 0 ° , _90 '_ and at 2 = 1, _. For q2 = 1,

the eccentricity and inclination are (respectively) zero and we encounter loss

of definition of g. For g = 0 _ the only solution to _ = 0 is for _ = 0

which corresponds to a parabolic orbit of e = 1. For the remaining possibili-

ties of g = ±90 ° we _inO _ = 0 for _ = 0.6_ 4 , a result in agreement with

the findings of Kozai,[ 12) Lidov.(13) Williams and Lorell.(14)

In order to determine the small (and zero) e behavior, introduce the

(non-singular) variables

A = e cos g

B = e sin g

The governing differential equations for these variables are

i=-icosg- Bg
e

(21)

= - _]_ sin g + Ag (22)
e

Substituting (i0) and (ii) for _ and g, simplifying and retaining only t ....

up to e2 , we find

3_ff I J3 In_ a2 J2

= 4L ; --2a 4 (1 - _)1/2(1 - 5_) + B [--_ (3 - 5_J - -_a (1 - 5_)

5J4_ 1 J3B2
+ _ (8 - 88_ - i19_ 2) + (5 - 41_ + 40_ 2)

16a 2a4<1 _ _)1/2
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J3(A2 + B2) ' (4 - 35_ + 35_2)I
+ 4a4(1 _ _)1/2

(23)

!

l-J4 16a5S"4(4- 56 - 14, 2/= _ (i - 5_) +

J3B- I
_)1/2 (5 - 41_ + 40_ 2) A (24)2a4(1

For e = 0 the only possible stationary solutions are for _ = 1 and _ = 0.2

corresponding to inclination of i = 0 ° and i = 63.4 ° respectively. Note

that for small e, say e _ 0.1, and small _(_ 5 0.5) we can integrate (23)

and (24) by successive approximation with J3 e2 considered to be "second order."

The integration technique parallels that of Breakwell and Hensley(8) except

that in the present case we no longer have the symmetry of coefficients and

variables.

In the general case, when the eccentricity may take any (allowable) value

we determine the stationary solutions from (15) and (18) via computer. This

was done for the two sets of Jn values quoted in Section IIl and the results

shown in Figs. 9 and i0 for the Langley and U.S.S.R. values respectively. Two

major divisions exist in these figures; the solutions of (15) for g = ±90 °

and of (18) with g determined from (17), the former appearing in the upper

left, the latter in the left center of the figures. The loci of critical in-

clination and eccentricity for a (representative) range of semi-major axis

values are given, terminating at the maximum allowable value of the eccentricity

for the semi-major axis in question. For the g = +90 ° loci the +90 ° loci are

shown in dotted lines, the -90 ° loci as solid lines. As noted earlier, these

tend to the two zero eccentricity solutions of i = 0 ° and i = 63.4 ° as

e - 0. Identified by its equation, cos 2 i = 0.6(1 - e2), is the Earth-only

curve which is the limiting locus for high-a orbits; the locus for a = 5 is

indistinguishable for non-zero e from the limiting curve on the scale shown.

Superimposed on the loci for g _ ±90 ° in the upper left corner are contours

of constant g values. The upper left corner region ceases to exist for a >

2 since then the stationary solutions move "under the lunar surface," i.e.,

they exist for eccentricities greater than the maximum allowable e.

An interesting feature can be observed in the evolution of the ±90 ° loci

as the semi-major axis is decreased from, say 5. On the limiting curve the loci

for ±90 ° coincide. As one decreases the semi-major axis the plus and minus

curves separate due to the increasing influence of the odd harmonic J3 (multi-

plier of J3 term is sin g). The critical inclination for a given eccentricity

is greater for g = +90 ° than for g = -90 ° if J3 > 0 and vice versa if

J3 < 0 (cf. Figs. 9, i0). Furthermore, in the case of J3 > 0, the maximum

inclination attainable for g = -90 _ by decreasing a peaks out at about a =

1.4, then decreases as a _ I. On the other hand, for g = +90 °, the maximum

inclination increases monotonically and goes to 63.4 ° as a _ i.

The situation is modified when the J3 and J4 coefficients change sign.

(From the present results it is difficult to estimate the influence of the

slight J2 value decrease, but presumably the majority of the changes are due
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to the (significantly) different values of J3 and J4.) The ±90 ° loci still

tend to separate with decreasing semi-major axis but now the curves tend to

draw together again as a decreases below roughly 1.7, say. This is due to

the proximity of the low-a curves to the inclination 63.4 ° for which the

J3 influence is minimum. The inclination for a stationary solution at a given

semi-major axis and eccentricity is larger for the coefficients given by the

Luna i0 flight than for the Langley coefficients for all values of a off the

limiting curve.

The last point to consider is the nature of the stationary solutions: Are

they stable or unstable? Stability in this context means bounded variations of

both _2 and g for motion near a stationary point; furthermore, the variation

of _2 must be such as not to exceed _rit" This question can be answered

from analysis of the Hamiltonian and its partial derivatives at a stationary

point. Since variation of g and _2 must be bounded near a maximum or a

minimum of the Hamiltonian. the stationary points corresponding to the minimum

and maximum are stable. The saddle points of the Hamiltonian will give the un-

stable stationary points. These conditions are easily checked on the computer

at the time of computation of the stationary solutions from the value of the

determinant

_2_t* _2_*

= (25)

From the canonical nature of the variables g,G, we have _ as

A = (26)

SO that stable stationary solutions are characterized by

_6 _6
A> 0 and _gg > 0 or _g < 0

and unstable stationary solutions by

A<O

(27)

(28)

All of the stationary solutions of Figs. 9 and 10 were found to be stable, cor-

responding to maxima of the Hamlltonian for g _ +90 ° and minima for g = ±90 ° .

The "saddle points" of the Hamlltonian, corresponding to stationary solutions

where equi-energy contours in the _2, g plane intersect, presumably exist

only for _2 < _rit"

226



LONG-PERIOD BEHAVIOUR OF CLOSE-LUNAR ORBITERS

Conclusions

In view of the results of the preceding section some additional comments

on the _2 _ g contours of Figs. 2-7 are in order. To aid in understanding the

evolution of the curves one can plot the locus of stationary _2 versus

for s constant semi-major axis; this is done in Figs. ii and 12 for a = 1.7

and a = 3.0 respectively for the Langley set of Jn'S. The figures pertinent

to this dicussion then are 2, 3, 4 and ii, 12.

As _ increases from zero, a stationary point develops at the appropriate

value of g (Fig. 9) and moves "downward" in the decreasing _2 direction,

disappearing under the lunar surface. Increasing _ still further, we encounter

the _ = +90 ° stationary point "rising" from below _2crlt. soon joined by the
g = - 0 ° stationary solution. Further increase in _ drives both +90 ° and

-90 ° stationary solutions toward _2 = I, and purely circulating (and, for the

most part, surviving) orbits remain. For a > 2 we have no non 90 ° stationary

solutions but otherwise the evolution is similar.

For high-a orbits the influence of the Jn'S is slight; hence the a = 3

picture for the U.S.S.R. Jn'S is not presented, being only a slight variation

of Fig. 4. The primary difference for the a = 1.7 case with the U.S.S.R.

JntS is the "evening" of the ±90 ° stationary solutions on the _2 axis,

implying that the critical inclinations are somewhat closer together for g =

±90 ° than in the case of the Langley Jn'S.

In Figs. ii and 12 for _2 very close to unity one seems to pick up an

additional stationary _2 solution at a given _ value for Jgl _ 90° and

for g = +90 ° . The existence of such double solutions could not be verified

from the equi-energy contour program due to numerical resolution difficulties.

It seems that it would be more advantageous to investigate these regimes via

the low and zero e equations. Although the rapid falling-off in inclination

at low e (Figs. 9 and I0) was verified for the g = +90 ° stationary solutions

from the small-e equations in A and B, more work is needed in this area. As

pointed out earlier, probably more progress could be made for the restricted

eccentricity problem through approximate integrations of the A and B equa-

tions and thus the behavior very close to _2 = 1 clarified.

Finally, it can be verified that the behavior for semi-major axis in the

range 1 < a < 2 is similar to that presented for a = 1.7, with variations

only as to the location of stationary points with _ and q2; for a _ 2 the

results are similar to those presented for a = 3.0.
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ABSTRACT

In the uniformly rotating reference frame of the restricted 3-body

problem (in which Earth and Moon occupy fixed positions on the absclssa)_

the equilateral llbration points L and L are known to be points of

equilibrium. A particle placed at rest at one of these points will

remain at rest for all times. According to linear theory, for very!

small disturbances from equilibrium the particle will tend to move

along bounded trajectories in the immediate vicinity of these points.

When the force field near L and L is not assumed to be linearj

and in addition other perturbing effects are included ' the particlels

motion might be excited sufficiently and lead to unstable divergent

trajectories.

This report presents the results of an analytic study of the

3-dlmenslonal stability of motion of a particle near L 4 in a nonlinear

Earth-Moon force field, upon which is superimposed a linear solar grav-

itational field distribution. In particular, the long period features

of the particle's motion are studied, which stem from the excitation

at or close to the partlcleTs natural frequencies, and are introduced

by the presence of resonance terms in the internal (Earth and Moon) and

external (solar) force fields.

The results show that in the presence of the internal nonlinear-

ities the stability of motion predicted by the linear theory is valid

for only a very restricted region of initial displacement and' velocity

disturbances. Disturbances outside this region would lead to divergence

of the solution. The nonlinear coupling of the out-of-plane terms with

the In-plane terms was found to be of minor importance and did not con-

tribute to an appreciable transfer of energy from one mode of motion

to the other.

The inclusion of the external force terms was found to admit some

equilibrium solutions of the variational equations. Of those, the one
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stableequilibrium solution found was characterized by a coplanar el-

• , .......................... a ....... , ...........

roughly 120pO00 ml) oriented at right an&les to the llne Joining Earth

to L 4. This orbit was traversed in a clockwise sense at mean angular

rate equal to that of the Sun, as seen in the rotating coordinate frame,

and very close to the partlcle*s faster coplanar natural frequency. The

particle's motion thereby became synchronized with that of the Sun.
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LIST OF SYMBOLS

Cj = Jacobi constant introduced in Eq. (43)

D = mean Earth-Hoon distance defined by Eq. (8)

D 1 = integration constant introduced in Eq. (65)

e _ .055 = eccentricity of lunar orbit

f,_ = functions of _ defined in Eqs. (69) and (70)

fx,fy .... forcing functions introduced in Eqs. (37)

C = Universal gravitational constant

G(B,_'),S(B,_')

H

H t

"3"H4""4

'_r
H

$

H (o)

_(o) H_)i'

i

J

J(B',e',t)

K I

K

Ki2

= generating functions introduced in Eq. (45)

= Ha_tltonian = H (°) + H'

= contains the higher order nonlinearities

= slowly varying Bamiltonians used in Eq. (48)

= partial derivatives of H as defined in Eqs. (22)

= Hamiltonian resulting from solar effects

= contains the linear and quadratic terms

= partlal derivatives of H (°) as defined in Eqs, (41)

= inclination of E-M plane with ecliptic

transformation matrix defined in Eq. (32)

= Jl + J2 + J3 = generating function introduced in

Section IX.

= Hamiltonian containing only secular and slowly

varying terms

time independent Hamiltontan = _[ + _:

coplanar part of K* defined in gq. (63)

Lagranglan
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Llbl (.91- SYMBOLS

m = ns/n = .074801 = dimensionless Earth orbital

angular velocity

m i = mass of ith body

n = mean angular velocity of E-M system

n s = mean angular velocity of Earth around Sun

Px,Py,Pz

= momenta defined by Eqs. (19)

Px,Py,Pz

Q,P = normal canonical coordinates introduced via

Eq. (30)

= displacement vector in inertial space

r.. = distance between masses

zj

r = position vector measured from L 4

rlL = position vector from Earth to point L 4

T = kinetic energy

= 2_/w = period of slow oscillation in _ and _ obtained
T £

from Eq. (84)

V = potential energy

W = normal out-of-plane solar acceleration at Moon's

position, introduced in Eqs. (121)

x,y,z = solutions to homogeneous linear equations

_,_,_ = forced response of linearized system

Xs,Ys,Z s = solar coordinates in xyz system, defined in

Eq. (17)

t_t = set of "slowly varying integration conatants"

= K*_*,_* set of variables canonical with respect to
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LiST OF SYMBOLS

_i 'Bi

AI3

A_I ' _2

¢12'(13,_I

set of integration constants

= It - (-l)iBi3where (i = 1,2,3)

= angular variable

= angular variable defined in Eq. (51)

= frequency shifts in the coplsnar natural fre-

quencies, defined in Eq. (79)

= angular variables introduced in Eqs. (15), (16),

and (17) and defined in Appendix B

= detuning frequencies

= constant defined in connection with Eq. (26)

= dimensionless quantity defined by Eq. (12) =

mM/(m E + raM) _ 1/82.45

= _2/DI = variable introduced by Eq. (67)

p,D = perturbation quantities defined by Eqs. (15) and

(16)

#o = 6 x 6 matrix defined by Eq. (24)

_,i = angular velocities of line of nodes, and of E-M

plane inclination, respectively

= angular velocity vector of xyz system

_l,_2,w 3 eigenvalues of the linear homogeneous set of dif-

ferential equations (i.e., the natural frequencies

about L4)

_M = angular velocity of a hypothetical isolated E-M

system (i.e., no solar perturbations present)
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( )T _ denotes transpose of ( )

( ) denotes total time derivative
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THREE-DIMENSIONAL, NON-LINEAR RESONANCES

I. I_'rR@l_TI@

The subject of the Earth-Moon libration points has aroused in re-

cent years the curiosity and interest of a great many researchers in

the field of celestial mechanics and ana!ytiea! dynamics. This renewed

interest by modern day investigators in this classical problem has been

stimulated by the recent telescoplc sightings by K. Kordylewski (1'2) of

two faint cloud-like objects or shapes in the vicinity of the L 4 and L 5

Earth-Moon libration points. These findings have led to a great amount

of speculation regarding the origin and stability of motion of such

clouds, believed by many to be composed of minute dust partlcles.

Although a number of more recent naked eye sightings from high

flying aircraft have since been reported by a few investigators in this

country, the issue of the existence or nonexistence of these libration

dust clouds has not yet been resolved to everyone's satisfaction by

any of the current studies, and is still the subject of debate between

proponents and detractors of this hypothesis. While the definitive

answer to this question might not be obtained until concrete evidence

and data will be gathered near these points from a space vehicle, the

quest so far has not been all in vain. In the process a great many

areas for further research of both a theoretical and a practlcal, mis-

sion oriented, nature have been exposed and tackled, which will keep

many researchers busy for quite s while.

In the present dissertation we shall not attempt to shed new light

on the question of the existence of dust clouds, but shall confine in-

stead our attention to the study of the interesting underlying theoret-

ical problem in nonlinear analytlcal dynamics of a partlcle. This par-

ticle may be associated, if one desires to do so, with the center of

mass of a hypothetical dust cloud. It should be pointed out however

that the uncritical application of some of the results and conclusions

of the present study to the dust cloud problem might lead to mislead-

ing conclusions, since such important destabillzlng effects as solar

radiation pressure and particle collisio_ have not been considered

he re.
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II. LIBRATIO_I POINT CEOI4ETRY

................. r ...............

indicated below for the purpose of orientation.

The five libratton points (also known as Lagrangian points) of

the classical restricted 3-body problem (i.e., Sun is neglected, and

Earth and Hoou revolve in circular orbits about their common center of

_ass) are indicated in Fig. 1. They are points of equilibrium in the

coordinate frame XYZ, rotating around the Z axis with the mean angular

velocity n of the Earth-Noon system, In the sense that no net acceler-

ations are experienced by partlcles at rest at these points.

Y L,

×t5 .... _"X

Fig. I: Librarian points of the restricted 3-body problem.

By means of linear small perturbation analysis the collinear

points LI, L2, L 3 were feund to be unstable to small initial distur-

bances, while the equilateral points L4 and L 5 were found to be points

of stable equilibria around which small amplitude conditionally pe-

riodic (i.e., in this ease deubly periodic but not necessarily simply

periodic) motions resulted for small initial disturbances.

The more realistic physical model used in the present analysis is

shown in Fig. 2. The Sum, lunar orbital eccentricity e _ .055) and
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inclination i of the Earth-Moon plane wlth the ecliptic (i _ 5 °) are

included. The Earth is assumed to move in a circular orbit around the

S_m.

',NE_NO_S_ _ _"

(REC._RESSIOM_. OUE TO _liql)

Fig. 2: Three dimensional geometry of the 4-body problem.
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II1. BRIEF REVIEW OF PAST WORK ON THE SUBJECT

Most of the basic work on the restricted 3-body problem stems back

to some of the classical studies in analytical dynamics of Lagrange,

Jacobi, Polncar_, etc. which are discussed in most of the standard text-

books on Celestial Mechanics. Some of the main features and results

are briefly st_mmarlzed in the following sections.

More recent analytic work on the 3-body problem concerned itself

with such questions as the existence of periodic orbits both in the

vicinity of the libratlon points, as well as periodic orbits which fill

the whole Earth-Moon space and possibly loop a number of times around

both primary bodies.

Studies which included the solar force field are of a more recent

vintage and are predominantly of a numerical nature, in that they

tackle the problem by direct integration of the full set of differen-

tial equations of motion for various periods of time t, and usually

for a very restricted set of initial conditions (3-5) (i.e., zero par-

ticle displacements and velocities, and collinear position of the major

bodies in the order Earth-Moon-Son). The application of IIamiltonian

techniques to the 2-dlmensional libration point problem was suggested

in an analytic study by Breakwell and Prlngle. (6) These techniques

arc extended in the present thesis to the 3-dlmensional problem which

also includes the effects of lunar orbital eccentricity.

i. THE CLASSICAL RESTRICTED 3-BODY PROBLEM: PAST KESULTS

AND THEIR LIMITATION"S

Some of the basic results of the 3-body theory, as related to the

libration points, and some of the questions left unanswered by the

theory are mentioned in A and B, respectively.

A. I. The existence of the five Lagrangian equilibrium points

shown in Fig. 1 waS discovered.

2. The stability of motion near these points was ir_esti-

gated by linearlzing the equations of motion near these points.
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3. For small deviations from equillbrium the coplanar homogen-

eous set of equations (Eqs. (25) with p = _ = m = O) in the xy plane,

which becomes uncoupled from the z equation, was shown to give rise

to a doubly periodic solution with the elgenvalues wI _ .955 and _

.298 (these frequencies were nondimensionalized with respect to the

mean Earth-Moon angular velocity n _ .23 rad/day). The uncoupled, out

of plane_ linear equation in the z direction possesses a simple har-

monic solution with eigenvalue _3 = I. (The reason for a period of i

lunar month in the z motion is easy to explain physlcally if we con-

sider the limitlng case of a vanishingly small lunar gravitational

force field. In that case the small particle at L4 follows a near

circular planar 2-body orbit around the Earth at the lunar distance,

which crosses the Earth-Moon plane twice for each complete partlcle

revolution, thus leadlng to an orbital period of I lunar month, which

is also the same as the period of the projected slmple harmonic oscil-

lator in the z direction.)

4. A first, and only, integral constant of the motion was found

to exist. This so-called Jacobl constant Cj corresponds to our scler-

onomlc (i.e._ time independent) Hamiltonlan H, and consists of the com-

bination E - nh z = constant = - Cj = H, where E is the particle's total

energy (i.e., kinetic and l_tential) in a nonrotating baricenter cen-

tered coordinate framep h z is its angular momentum in the Z direction,

and n is the mean angular velocity of the Earth-Moon axis.

B. Some difficulties are encountered if one tries to extend the

stability conclusions obtained from linear analysis to predict the be-

havior of the complete nonllnear system. The maln reasons are indi-

cated below.

I. The near ce®_ensurabillty of the elgenvalues w I -="39

leads to an internal near resonance with a detunlng El2 = w I - 39 -="

.954593-3".297912 = _- .06086. This causes poor convergence of the

usual perturbatlon solutions by means of whlch one attempts to evalu-

ate the effects of hi_her order terms, by substituting back the homog-

eneous solutions into the nenllnear driving terms. Some of them give

rise to combination frec_encles which are nearly resonant with the

natural frequencies of the llnear equatlons, and thus lead to s_ll

divisors in the next al_proxlmatlon.
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2. The Hamiltonian H is not definite near L 4 or L 5 (positive

or negative). This slgn indefiniteness has a bearing on the nature of

If we suitably recombine the terms in H of A(4) above we can come

I v 2
up with an equivalent relation for the F_Imiltonlan H = _ + Vef f,

where v 2 = _2 + _2 + _2 and Vef f represents an effective potential
12.2

energy Vef f = - _ w _x + y2) _ _i/r I _ _2/r2. The first term in H

thus corresponds to the kinetic energy, as measured In the rotating

frame, while the last two terms in Vef f represent the usual gravita-

tional potential energy V. In this new form H can be interpreted as

being in the nature of an energy integral of the motion. The nature

of the stability near L4, 5 can thus be deduced from the shape of the

surfaces Vef f = constant in that region. It turns out that near the

equilateral points the planar part of Vef f has the shape of a "poten-

tial hill" rather than the "trough"which is required for stability.

_)is circ_stance raises a question concerning the applicability

of the linear-theory stability analysis to the complete nonlinear sys-

tem, i.e., whether the nonlinear system weuld exhibit the same kind of

stability as predicted by the linear equations for given initial con-

ditions. One may remark at this point, on the basis of work to be pre-

sented later, that the answer is yes In a rather small neighborhood of

L 4. The nonlinear system_r111 however exhibit instability for c(,rtain

ranges of initial eondltlons.

It is also appraprlate to remark here that the stability of motion

exhibited by the linear system near L 4 and L 5 in the presence of a po-

tential energy '_IIi" is brought about by the presence of gyroscopic

terms in the linear equation (due to the Corloli's force 2(_ x _ which

arise in the rotating frame). When further nonlinear and external ef-

fects are included, it Is possible for additional energy to be trans-

ferred into the system wlth the result that initially small oscilla-

tlons may grew in the course of time.

It is interesting to manti_h that a Taylor series expansi_ of

Vef f near L 4 shows the equlp@tential curves to be extremely elongated

ellipses of fineaess ratio reughly 1:10 oriented at right angles to
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the line from barycenter to L 4. The potential field thus falls off

quite slowly as we move in a direction perpendicular to the Earth - L 4

line.

3. Another internal resonance occurs because of nomlinear

coupling of the z and xy solutions, and the near commensurability of

the eigenvalues _1 -_ _3' with the resulting detuning El3 _ .0454.

This resonance leads again to poor convergence of perturbation type

solutions.

4. Although not actually a part of the classical 3-body

problem, it might perhaps not be inappropriate to mention at this

point also the presence of a third important resonance of an external

nature caused by the Sun's perturbative action on a nominally circular

lunar orbit, which is an important factor in the subsequent analysis.

This indirect solar perturbation leads to a detuning f_l = 2[_1 - (1 - m)]

= 2_.95459-.92520] _ .05878.

5. The additional complications o£ resonances introduced by

the inclusion of lunar eccentricity terms will be taken up later.

2. NUMERICAL APPROACI_S (SOLAR EFFECT INCLUDED)

Straightforward integration of the complete set of differential

equations, for zero initial conditions, gives rise to particle tra-

Jectories, a typical xy projection of which looks roughly like the

one shown in Fig. 3 (taken from Ref. 4).

Figure 4 presents schematically another plot due to Yeldt and

Shulman (5) of total particle displacement d with time t for an inte-

gration time period of 5000 days. Initial conditions were the same

as those in Fig. 3.
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t'_ _YS
-I

Fig. 3: Typical particle trajectory in xy plane near L4
(t = 700 days)
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IV. SO_ CONCLUSIONS REGARDING PRIOR STATUS OF THE PROBLEM

The following conclusions sum_srize some of the points which were

raised in Sections III(A) and III(B):

I. The past analytical efforts do not refolve in a satisfactory

manner the question of boundedness of motion near the equilateral li-

bration points of the Earth-Moon system, with or even without the in-

clusion of the perturbative effect of the Sun.

2. The numerical results available to date are rather limited

in that they were generated only for restricted sets of initial con-

ditions and initial Earth-Moon-Sun configurations. Consequently they

do not shed much further light on the question of the possible exis-

tence of domains of initial conditions and configurations which allow

small amplitude, bounded motions to take place for long time periods.

3. In view of the multiplicity of possible starting conditions

and configurations, it is quite clear that a purely numerical search

for such initial conditions would be both costly as well as of ques-

tionable success, and thus not very attractive.

4. The necessity and usefulness for further analytical ground-

work on this problem seems to be clearly indicated.

The above brief rt_downwill hopefully help to bring into better

perspective the difficulties as well as the motivations underlying

the present investigation.
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V. TI_ L/_RAI_IAH L FOR A PARTICLE NEAR L 4

We shall desire the expression for the Lagranglan of a particle

near the L 4 iibration point, in the rotating xyz frame centered at L4,

and having its xy plane coincide with the fundamental Earth-Hoon orbi-

tal plane. To this end it is convenient to start out with an inertial

reference frame xl,Yl,Z I in which the positions of Earth, Moon, Sun

and particle P are designated by the numbers I, 2, 3, and 4, respec-

tively, and by the position vectors Ri (i = I, .... 4). The kinetic

energy T I and potential energy V I of all the masses are then

T I

V I

4

=l ""
_ miRi'Ri

i=l

4 4

1 = 1
2" I Gmimj---._
i,j=1 l_i _jl i,j=1qj
i/J i/J

(i)

We switch first to an Earth centered rotating coordinate system Xe,Y e,Z e

%_th the X e axis pointing in the direction of the instantaneous position

of the Moon (_ neglect here the 3000 ml separation of harycenter from

the center of the Earth). For a particle of unit mass at point 4we

then have

V = ......
r14 r24 r34

(3)

1 -- + 2R 1 . r14]+ _I + _2 + ___..3+ .L = _- [#14 " r14 r14 r24 r34 ½ _1 I_1
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where

_i - C"i

i = 1,2,3

The last term in L is independent of particle position and velocity

and can be dropped. This follows from our assumption that the par-

ticle does not affect the motion of the primary bodies. It is also

convenient to remove from L the explicit presence of the Earth's in-

ertial velocity RI" This can be done via Lagrange's equation

_L_____]__L____= 0 (4)i

dt L_Tl4j_T14

and the Earth's equation of motion in inertial space

_2 -- _3/__--
*_I = -_-- r12 + 3 r13

r12 r]3

(s)

Since R1 _ R1 (_14) ' one can replace Eq. (5) by the equivalent

relation

R1 = -- " -- + _I

b_14 12 r12 r14 Trl3 r13"

(6)

After substituting Eq. (6) into (4) one can extract from it the

expression for L shown in Eq. (7):

I -- : _I I

L = _ r14. r14 + -- + _2 - +

r14 r12 /
3134r3 r3

(7)
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The last (solar) term in (7) can be further simplified if we re-

place it with the solar potential energy gradient evaluated at the

position of the Earth, as shown in Appendix A. This neglects term

of magnltude (r14/r13)3 --_ 1.5 x 10 -8, which is quite satisfactory
in

the present case, and leads to the expression

I --" -- _I

L = _ r14 • r14 + --
r14

+_ 2-_ _12 I _13
(s)

ExpressiOn (8) is still not in the desired final form of a Taylor

series expane:lLon around L 4. Before we carry out the expansion it is

convenient to nondimensionalize every_ing, as indicated in the next

section.
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VI. NO_IMENSIONALIZATION AND EXPANSION AROUND L 4

i. NON_iI_NSiONALiZAT_uN

The nondimensionallzation is most conveniently carried out by

choosing the reference frequency n and length D defined by

_I + _2
D 3

< WM+ _ cos i > = mean angular veloc-

ity of E-M axis X e _ .23 tad/day
(9)

D = < r12 > = mean E-M distance _ 2.4 X 105 ml
(10)

It should be pointed out that the only physical quantity which

can be measured with any degree of accuracy is n, so that the refer-

ence length D is actually a computedj rather than a natural quantity,

and is defined by Eq. (9). The averaging of r12 in Eq. (i0) must there-

fore be interpreted in the light of the more basic definition (9).

luM denotes the mean angular velocity of an isolated Earth-Moon

system (no solar perturbations present), and _ and i are indicated in

Fig. 2.

Two basic dimensionless quantities which will appear often in our

equations are

ns _ /_3 D 3
m = • --_ .074801

_'--J"T- _l + _2
r13V

(11)

and

_2 _ 1 (12)
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where

n s angular velocity of the Earth around the Sun

From now on all lengths, velocities and times will be treated as di-

mensionless quantities, but we shall retain their old sym_bols.

2. EXPANSION AROUND L 4

Just as n was the basic quantity selected in the nondimensionali-

zatlon of the equations, we shall select m as the basic quantity, or

yardstick, which defines order of magnitude. We shall denote by o(m)

a quantity of first order of smallness, o(m 2) of second order, etc...

The Lagranglan L of Eq. (8) can be written in terms of displace-

ments and velocities measured in the L 4 centered xyz frame by writing

the dimensionless vector relations

r14 = rlL + r

r14 = rlL + r + w x r

(13)

where

_= XL+ yly'--+ ZL

I_IL I = I + p(t) = J_12l = instantaneous displace-
ment of libration point

L 4 from the Earth

rlL = JrlL l ix + + W x rlL

and for the total angular velocity _ of the xyz frame in inertial space

- n
w = _ + _(t) = i z + _(t) (L4)

p(t) and _(t) are the perturbations of the E-M distance, and angular

velocity caused by solar and eccentricity effects, and are provided by

classical lunar theory. (7'8)
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I e 2 (i - cos 2¢)
p(t) = - .0079 cos 2{ - .00093 - e cos _ +

15 ,......
8 am coa _% - _) _L_

[ 15+ .0202 cos 2_ + 2e cos _ + _-- em cos (2_ - _)

5 e 2
+ _ cos 2_ T z

= VxT x + Vyi'y + %i" z
(16)

For additional details regarding the above expressions, and for an ex-

planatlon of the various angular varlables used, the reader is referred

to Appendix B. The coordinates of the Sun in the Xe,Y e,z e frame, pre-

sented in Eqs. (17) are also developed in this appendix.

The Sun's position coordinates in the rotating frame are

x s _ r13 cos

Ys = - r13 sin

z s = r13 sin i sin (_ - v') (17)

We now stipulate that the following quantities will be treated

as being of the first order of smallness:

m,e,x,y,Z,Px,Py,Pz, ,4e_ -,
(18)

The momenta Px,Py,Pz conjugate to x,y,z are introduced through the

relations
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aL Px -
Px 5-_ =

5L 1

Py ffi _-_ = Py + g (19)

_L

=--=PzPz _;

The terms linear in e(--_ .055) in O(t) and v(t) are obviously only

of o(m), and will have to be treated in a different fashion if we are

to retain the definition of Eq. "18). This problem will arise when we

include the eccentricity in the canonical transformations to slow variables.

The use of a Taylor series to expand L and H around L4 in terms

of xjy,z, Px' ... etc ... raises the question of how many terms of the

series expansion have to be retained before we truncate it, i.e., what

order of nonlinear terms must be retained 8o as to take into account

all the dominant perturbative effects. This question is readily an-

swered by noting that the highest internal resonance is that resulting

from the near equality _I -=-3_D2 which indicates that nonlinear terms

up to and including the fourth order must be retained in the Taylor

expansions of L and H.

When all the steps have been carried out and all the terms col-

lected, as shmm in Appendix C, one obtains for the llamlltonian H, de-

fined as usual by means of

where

T
Pr =

and

It = pTr_" - L (20)

EPx'Py'Pz] = (1 X 3) row matrix of momenta elements

r = = (3 x I) colu_ matrix of position elements
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the expressiOn of Eq. (21)

_ **(o) __ _t = {21-- /_2 ._ _2 __ _2_ __ / ..... _ _- i (v2 _ _ 2 + & 2_--- .... \'x ' -y ' "z/ " \'-x "-y/ 8 \-- -_ /

+ 1

 ,s)(Xsx++zsz)- _ (Xs + Ys y - [

r13

}(o)
1 )zI+ _'lJ3 Vy+ vx

+ 5qr3 (i - 2_) 5x3y - 9xy 3 + 12xyz2) + _ + _-6 + i--6
32

123 2 2 3 4 3 4 + _ g P x 2 \
_ 4gZ--xy -i._y -_z 4

+  px)+

(21)

In the above expression we have split H t into a cubic part H 3, a

quartic part H4 and a solar part Hs, which in turn is composed of in-

direct solar effects (via p and v) and a direct solar effect (via the

2
m term) .

We shall concern ourselves in Section VII only with the motion

resulting from the bracket [ ](o) which represents the linear and
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quadratic part H (°) of H. These terms give rise to a system of forced

linear differentlal equations which will be discussed below.

The analysis of the effect of the terms in H t on the motion of

the particle will be started in Section VIII.
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VII. THE LINEAR DIFFERENTIAL EQUATIONS A_) THE TRANSFORMATION

TO I_OFJ4AL CAblON'ICAL COORDINATES

Hamilton's equations can be written down in a very compact form

by using the matrix notation. We define the (3 x i) columl matrix

for r and Pr in a manner slml]ar to those introduced for r and P
r

in connection wlth Eq. (20), and introduce the additional (i × 3) row

matrix of partial derivatives of H (O)

r [_(o) _(o) _H(o)]"(°> = L-_-' _' z-_-_--J

r ° L-_j' _--V'T-J

(22)

The equations of motion then can be written in the form

, r.<o>]

o[.(o)i_TJ

(o)
,_oro.(O_r_snd'_Tsrothetr.nsposoof .(o>.°d_<o_r _r

¢o is the (6 x 6) matrix

1 ° (24)

I is the (3 x 3) identity matrix, and 0 is the (3 x 3) null matrix.

In component fol_p Eq. (23) becomes

(23)

respectively,

(cont. on next page)
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+=4:)°Pc+_ _o,-_°3}
8

, _ I( I )ix = - H(°)x = ey - _ x + (1 - 2_)y + P + 2 _z

r13 s

+=__(o, _, +5 _ I C ,)y y = x _Y+ (I - 2_)x+ V_ P +_- v z

[<+°2 _ (v+_2j_
S

2 3

r13 s

(25)

The terms in { }s contain the direct and indirect solar contributions.

The homogeneous part of Eq. (25) Is obtained by setting p = v = m = o.

The characteristic equation resulting from a trlal solutlon e iu¢ is

(_ +2)[:__ 27- +1-_- 2_= o (26)

where

= _ (1 - 2_) = 1.26753

The solutiOnS to Eq. (26) are the eigenvalues

w I = • .95459

w2 = • .29791

w3 = ± 1.0 (eox_esponds to an
uncoupled z neti_)

(27)
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The above _'8 are the natural frequencies which were used in the

discussion of the detunlngs in Section III.

L=t _h= _oluLiu,_ uf Lhe humogeneous sec of equaLiun_ b_ d_lluL_d

by x,y,z-..and suitable particular integrals by _,_,_... Thus the cOm-

plete solutions are

x=_+_

y = _ + y (28)

For later use the 6 constants of integration which appear in the

solutions (28) are best introduced by transforming first to a normal

canonical set of coordinates Q and momenta P

I l, ,2, (29)

which also satisfy l]amilton's equations of motion and represent un-

coupled motions in the form of independent simple harmonic oscillations

having as frequencies the three eigenvalues w i.

The linear equations of transformation can be written in the form

Q1

Q2

Q3

J P1

P3

(30)

where J is a (6 x 6) motrix whose colu_s consist of the eigerrvectors

corresponding to the eigenvalues _ wl, and which are normalized so as

to satisfy gq. (31) which is the necessary condition for a canonic41

transformation.
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J _o jT = ¢o (31)

The matrix presented in Eq. (32) satisfies this conditions and thus

provides thc proper coordinate transformation.

J =

KI{ 2 ___w2

2_ 1 - 2_ o _ K2o_ E_ 0
0 0 0 0 0 I

K1
_o1Io_÷_) _/o_+_/o ;_ _ o

Kit9 _9_1o1_ _ o _ o_/ _ _/ o
0 0 -1 0 0 0

where

45 _-1/2

g 1 = .62016

K2 = .72101

The numerical values of the elements in J are

Ii 0 0 0 2.05374

.24032 -1.44202 0 -.823463

j = 0 0 0 0

.687459 -.0727629 0 .823463

.750378 .272262 0 .869732

0 0 -I 0

-5.66028 il

3.067680

-3.06768

-5.23066

0

(32)

(33)
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In terms of Q and P the Hamiltonian H (°) (for the case p = v = m = o)

becomes

=1 22 22 +1 22

The solutions for the three harmonic oscillators which make up

the expression for H (°) in Eq. (34) can be given in the form

QI = w-_- sin Wl_ 1

Q3 = w--_
(35)

P1 = V_l cos _1_1 _

P2o  oos

where 8_ = t + '1' B2_" t - B2' _3 = t + B3' and e i.B i are the 6 re-

quired constants o£ integration.

Substitution of gq. (35) and the J matrix (33) into Eq, (30) gives

the homogeneous solutlons for the coordinates

x= 2.902 _1 cos Wl_ 1 + 8.003 V_ cos w2_2 _

_= 2.103 _1 cos (WlB_l + 123.57 ° )

(36)

Z = C08
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The particle trajectories in the xy plane corresponding to each

of the two coplanar normal modes are ellipses with major axes at right

angles to the vector _IL and thickness ratios {minor axls/major axis)

1:2 for w I and 1:5 for w 2 as shown in Fig. 5. Motion proceeds in s

clockwise direction.

100" -_ : 2_& DAY5

_RLO_-_° 9,7_S

£ m

Fig. 5: Trajectories of normal modes.

The complete unperturbed xy motion consists of a weighted super-

pesition of these two normal modes, and is in general not periodic.

The particular solutions _,_, corresponding to the forcing func-

tions contained in the [ ] brackets of Eq. (25) are most readily ob-

tained fro_ the coplanar equations

3 = fx + fP
- 29 - _ x - _ y - fY x

(37)

9 f + fx + fP); + 2_ - l] x - _- y = Y
Y
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where ix' fyJ fPx' fPy denote the direct and indirect solar forcing

functions of the subscript variables given in equations (25). For

our purposes it is sufficient to obtain the particular solutions to

o(m2). After introducing Eqs. (16) into (37) we obtain the solutions

= _o + _e + _em + _ + L + Xce2 2

= _o + Ye + Yam + Ye2~ + Ym2- + Ye

(38)

where

_o

_o

e

Ye

%.

Yam

fie

_e2

_2

L2

_c

_e

= .01016 cos (2_ - 67.2°)[ %
/

.00867 cos (2_ + 38.3°)]

= .31 e cos (¢ - 72.2 ° )

= .227 e cos (¢ + 50.2 ° )

= ii.I em cos (2_ - ¢ - 75.2 °)

= 7.86 em cos (2_ - ¢ + 51.76 °)

= 1.274 e 2 cos (2¢ + 30.8 °)

= 1.062 e 2 cos (2¢ - 66.0 °)

= 1.697 m 2 cos (2_ - 127.7°)_

1.43 m 2 cos (2_ - 20.83 °) J/

= .50 e 2 I

= .2895 e2 f Constant displacement

Resulting from the

indirect solar terms

Resulting from the

direct solar terms

No particular solution for z is retained since it is of o(m 3) or

higher, and would lead to terms of o(m 5) when substituted into H i • On

this point we shall have something more to say in Section XlII.

The corresponding solutions for Pr are readily obtained from the

relations
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P =_- y
x

P =9+x
Y

etc.

(39)

It is interesting to note that if we substitute Eq. (35) into

Eq. (34) we obtain the simple expression

H(°) = _I - _2 + c_3 (40)

The particular manner of introducing the polar set of integration

constants _i,Bi into Eq. (35) follows from the canonical relationship

which theybear the HamiltonianH (°) . The quantities B_,- B_, _and

_I' _2' _3 form, respeetlvely_ a canonical set of coordinates and con-

jugate momenta with respect to H (°) of Eq. (40).

Thus

= : _ H (°)_i = i H (°) _i : 0 or =

ffl 8_ _1 const

H(o)_ = -i: H (°) _ : + :0 or _2 = const (41)

_ = i = H(°)_3 _ = - H(°)_3 : 0 or _3 = const

The above results are in agreement with our stipulation that _i

and B i be constants.

Furthermore, the quantities _i and Bi themselves forms canonical

set with respect to an unperturbed Hamiltonian H = 0.

The above canonical properties will be made use of when we analyze

the perturbative effect of H t.

The form of H (°) in gq. (40) makes it very easy to verify the

point made earlier in B(2) of Section III, regarding the sign indeter-

minacy of H which is seen to depend, for small _3" on the difference
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_I - _2" Although in the present case @l and @2 individually are

constants, it turns out that for the case _3 _ 0 the combination

_l(t) - @2(t) remains a constant of the motion also when the pertur-

bative effects of higher order internal nonlinearities are included

(but external solar perturbations and lunar eccentricity are still

neglected). Thus _I and _2 may grow individually as long as their

difference remains fixed, which indicates the possibility of an in-

ternally generated instability near L 4 also for the classical re-

stricted 3-body problem (for which we use the exact expression for H).

That H is a constant of the motion in the latter case (where

H _ H(t)) as stated in A(4) of Section III, is readily verified since

dH blip+ BH
d-_ = _-_ _ _ = using Eq. (23) = - _Z_ + _T_ = 0

(42)

The only existing integral of the motion, the Jacobl constant Cj

(see pp. 281 of Ref. 9 where it is denoted by unsubscrlpted C), is

equal to the negative of H

= - cj (43)
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VIII. MDDIFICATION OF THE LINEAR SOLUTION DUE TO H t

The inclusion of the terms in the Hamiltonian H t, neglected until

nov in the previous solution, can be handled by a method equivalent to

the customary variations of constants technique by requiring the orig-

inal constants of integration c_ and 8 introduced in Eq. (35) to become

functions of time, which then satisfy Hamilton's equations with Hamil-

tonian H t.

Inasmuch as we are not concerned in the present investigation with

an exact or detailed determination of the particle's trajectory, but

rather in the overall broad features of the motion, we shall desire to

obtain only the slowly varying components of c_ and _ which will arise

from the secular terms in H a, and those terms containing low combina-

tion frequencies which arise from the near resonances.

This can be accomplished by means of a suitable canonical trans-

formation of coordinates from the polar canonical set c_,B associated

with H = 0 to a new slowly varying canonical set c_#,8 # associated

with a new sl_ly varying Hamiltonian K t. K # will contain only the

lowest frequency terms which arise in H # as a result of the above

transformation, all other faster terms having been suitably eliminated.

The question as to which frequencies should be retained, and the cut-

off point beyond which the periodic terms are dropped cannot be readily

answered in general terms, but would depend on the particular problem

considered, and also on the density of spacing of the resonance peaks

in the lower end of the frequency spectrum. This point will be touched

upon again later in connection with the specific form of the expres-

sion for K t.

Returning once more to the coordinate transformation mentioned

earlier, it is reasonable to assume that for relatively small displace-

ments x,y,z of the particle, the effect of H t would be in the nature

of a perturbation of the linearized solution found earlier. With this

assumption in mlnd we -_y now consider a stationary contact transfor-

mation
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i

_i = _i + 6°_i

(44)

that my be introduced with the aid of a generating function G(B,e t)

c(B,_') = _' + s(B,_') (45)

which satisfies the relations (lO)

_' = _ = _ + s,

(46)

The first term _t in G generates the identity transformation,

while the function S(_,_') = S I + S 2 denotes an additional suitably

selected generating function which is introduced for the specific

purpose of eliminating all the short period terms which occur in H':

S 1 is selected to eliminate the terms of o(m 3) and S 2 those of o(m4).

Since S does not depend explicitly on time t we can write

Kt(Bl,_t,t) = H(_l,_t,t) + Hl(_t,_t,t) (47)

where H above is evaluated in terms of the new coordinates B t and new

_nta e I.

When all the required steps of the transformation are carried out,

as indicated in Appendix D_ one arrives at the following relation for

K t

K'= _3 + HI, + H4 - _ [H], SI] (48)

266



THREE-DIMENSIONAL, NON-LINEAR RESONANCES

H 3 and H 4 are the long period terms resulting from the Taylor

series expansions

_
n=l

(49)

evaluated at x,y,z.

[H3,Sl_denotes the long period part of the Poisson bracket of

with S I. H4 results from the substitution of theH 3 homogeneous so-

lutions x,y,z into H4, and consists of an internal part H4int and an

external part H4ext which contains both the direct and indirect solar

effects.

The algebraic work needed to express K' in terms of _',B t and t

is rather formidable, and is one of the major stumbling blocks in what

would otherwise be a relatively straightforward solution. A few repre-

sentative steps of the required manipulations are briefly demonstrated

in Appendix E. If all the manipulations have been successfully carried

out, one does eventually come up with an expression for K'whieh has

the general form shown in Eq. (50).

;[ 1+ , + , + ,3/2
KS = _ bl + b2C2_l+kl _2b3 _3b4 _I bsCA¢l+k 2

+ ffsB/2rb C + b7C_A¢l+k4] + tl/2ff rb C ]2 [ 6 A@2+k3 1 2L 8 A¢I+%5J

blo  3 ', ++ _ I/2f + + _l_2bll I 12

_'2b + _'l/2b C + ' 'l/2Fb +

+ 2 13 2 14 o+k 8 _1_2 [ 15C_-AOl+X9 bl6CA¢2+_lO]

''[ + blgC2AI3+_II ] _2_3h20
+ _2hl 7 + _i_3 bl 8 + t ,

tl/2 sr b _ +

+ _2 e3L 21uA¢2+k12 b22CA13_o.+A¢3+kl 3] (50)
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b.(j = 1,.--22) are known constants and Cx stands for cos x.
J

The detuning frequencies retained in Eq. (50) have the following raag-

241 4 2(1 - m - _1 ) = -.05878

3 2
2A@ 1 "_ 2(1 - _-m - Wl) = .08242

A¢2 = <_ - 3_28 _ -J (1 - .0042 - 3w2) = .10207

c_ = WlB _ - 3w2B2_ "_ u;1 - 3_2 = .06086

A13 "_ w1 - l = -.04541

A13 + AO3 -_ - .04541 - .0042 = -.04961

c_ - &OI "_ .06086 - .04121 = .01965

(50a)

and

_3 - _ + A03 4 -.1105

The terms containing AO arise from the lunar eccentricity.

As can be seen from Eqs. (50a) no terms with frequencies larger

than .12 have been retained in the expression for K s. Although this

choice of cut-off frequency appears at first sight rather arbitrary,

it can be argued here that for higher frequencies the resultant de-

tuning would not be narrow enough to introduce the very smell divisors

which usually lead to divergent solutions, and that consequently their

omission should not materially affect the overall features of the re-

sultant particle motion.

The large number of frequencies which still are left in K s pose

considerable difficulties in the way of a straightforward analytical

treatment. To enable one to carry out nonetheless a reasonably mean-

ingful analysis of the effects of internal resonances and of the solar

perturbation, it was found necessary to reduce the number of admissible

resonance peaks still further. This was accomplished by disregarding

for the present time from further consideration all the terms which
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arise from the lunar orbital eccentricity. While this step does tend

to restrict the present analysis to encompass only circular lunar or-

bits, it manages to reduce the number of detuning frequencies left

down to 3. For this number of resonances an analysis can be carried

out.

Eccentricity terms could perhaps be reintroduced at a later time,

possibly by means of an additional perturbation of the variational

equations which result from the present circular orbit analysis. A

possible shortcoming with such a scheme might be that it would prob-

ably lead to a set of parametrically excited linear differential equa-

tions which would not be readily solvable.

Another somewhat different approach might be attempted, if we re-

call that the elliptic 3-body problem (no solar perturbation present)

admits as a solution an elliptic particle orbit around L 4. This el-

lipse is identical to the ellipse along which the moon appears to move

relative to an observer moving with constant circular velocity along

the moon's mean circular reference orbit, but rotated 60 ° with respect

to it. Stated another way, the particle's motion is synchronized with

that of the moon, but takes place 60 ° ahead of it. Variational equa-

tines for these orbital elements due to the solar perturbation could

then be set up and hopefully solved.

The above are just two of the many other different approaches

which might have to be explored in greater detail before the more gen-

eral question of stability of motion could be satisfactorily resolved.

In the present dissertation however, we shall hereafter confine

our attention only to the case of zero lunar eccentricity.
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IX. THE LONG PERIOD HAMILTONIAN FOR e = o AND

ELIMINATION OF TIME t

For the case of e = o the expression for K' shown in Eq. (50) is

reduced to the simpler form given in Eq. (51) below. The numerical

values of the coefficients b, and the phase shifts _, are determined

after one performs all the tedious algebraic manipulations similar to

those briefly demonstrated in Appendix E. There results

K'_{126W2- 0.00_;_+ 3.82_2

- 29.04<1/_3/_cos[.oo08_t+ _IB;+ 3_+ ,_._o]

_'_;[.093l_+ .og_gcos_3- .0_93_sin_]+

+ ._5_;-.002_31 ,2_ - {.00539_;+ .00_20_=_
3 Jint

+.02095<cos[.05g_gt+2_IB:+_.4o+2_'-2,] +.OO_l_'_
JJext

(51)

whe re

A13 = wl(t + 8 I) - (t + B;) = -.04541t + WlIB f - 8;

The first bracket contains all the internal terms, while the sec-

ond bracket includes all the external (solar) terms. The long period

tz
contributions to the coplanar (_1,_2) terms resulting from the periodic

parts of the iQdirect p(t) and v(t) terms in H ° were found to cancel

exactly the indireet periodic terms generated by the linear forced re-

sponse Xo and Yo of gq. (38). The external terms displayed in Eq. (51),

which are left after the above cancellations, stem from the eontrlbu-

tlon of the indirect constant component -.00093 in p, from the direct

(m 2) terms in H, and from the forced responses _ 2 and _ 2 of the

m m

linear system.
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Equation (51) shows that the dependence of K s on time t comes

about through the presence of three distinct slowly varying trigono-

metric terms with frequencies .06086, .09082 and .05878, all of which

are of o(m). Since the same trigonometric functions also depend on

various combinations of the three angular variables B_(I = I_2,3),

the possibility suggests itself to eliminate the explicit presence of

t
t by means of a suitable redefinition of the _i so as to absorb the

time dependent terms. Such a transformation would result in a new

Hamiltonian K* which would not depend explicitly on t.

This absorption of the time terms is accomplished by means of a

coordinate transformation to a new canonical set of variables _* and

B* as indicated below.

* via
We define B I

281 = .05878t + 2w181 + 29.4 ° - 2E + 2es

or

B1 = .02939t + *IB_ + 14.7 ° - ( + (t (52)

The conjugate momentum _I is obtained by the introduction of a

generating function Jl defined as

J1° "°2939t+ + 147° + (53)

so that

• 3'I 1 .
= -- = or = --

For the definition of 82 we use the trigonometric argument

(54)

.06086t + u&iB_ + 3w282 q 14.2 °
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t from Eq. (52).
and substitute for 81

L - --2_2 "

*

which suggests that B2 be taken as

B 2 = .03146t + 3_28 + C - C

Use of a second generating function

J2 = _2 .03146t + 3w28 + _ - E t

gives for the conjugate momentum _2

This leads to the expression

"- J _I

- .5 ° (55)

.5°_ (56)

* _2

_2 = 3w--_ (57)

The expressions for 83 and _3 can be obtained in a similar fashion

with the aid of _3" Cucnbinlng first the cosine and sine terms

.08608ooo2_- .0,9_sin2_: .094_cos[2_+_.5C_

we find that

* • (I
83 - .074801t + w383 - E + + 2.42 ° (58)

and after introducing a generating function J3 we obtain

* _3 0

a,3 = _ = ot3 (59)
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Letting 3 = J1 + J2 + J3 and noting that J = J(Bt,ff*,t) we de-

termine the transformed time independent Ra_ltonia K* from the re-

lation

= g (B ,_ ) + _J(_'r_ ,t) (60)
_t

Substitution for _s,St in terms of _ ,8 in Eq. (51) and use of

Eq. (60) results in the desired expression for K*:

*2 * * *2 .... "1/2 *3/2K* = .I154<y I - 5"I_i_2 + 3"059_2 - z_'_/_l _2 C * *
BI+82

• * 67 **+ .0903_1_3c2(__)+ .0889_ + _1_3

- .002231_ 2 + .02939_1 + .03146_2 + .074801_ 3 int

( . . .[+ "004193_3 - "00733&_2 - _1 .005149 + .02563C 2 ext

(61)

where the notation C x m cos x has again been used for convenience.
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X. ANALYSIS OF THE INTERNAL COPLANAR MOTION

i. SI_U_LI_It_TIUN OF THE IIAHILTONIAN

K*
The analysis of the motion governed by the Hamiltonian of

Eq. (61) is made easier, and a greater amount of physical insight is

gained, if we treat at first separately the internal terms contained

in the first bracket. The modifications required by the presence of

the second, external, bracket are then taken up later.

Let us write for convenience

K*
K* : K: + e (62)

where

K*
i = all the internal terms

K* = all the external terms
e

and confine our attention in this and the next section to the Hamil-

tonian K i .

It would help matters appreciably if we could eliminate also for

the time being the coupling which exists between the out-of-plane and

coplanar terms.

This elimination can be accomplished by a suitable choice of ini-

tial conditions which result in _3: O, provided we have reason to be-

lieve that a physical motion in which _3 does not depart much from its

initial small value can in fact exist.

The resultant coplanar type of motion can be maintained as long

as the nonlinear coupling with the out-of-plane terms does not lead

to an appreciable transfer of energy from one mode of motion to the

other.

In the next section, where we consider the out-of-plane motion,

this situation will be shown to hold true.

On the basis of the foregoing we shall neglect here all the _3

terms in K , which leaves us with the 2-dimensional Kamiltonian Ki2

given by
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* *2 * * *2 .... "1/2 *3/2^

Ki2 = .I154cr I - 5.1c_1_ 2 + 3.059_ 2 - zJ._1_ _ _ , ,
1 2 61+82=

+ .02939_ 1 + .03146c¢ 2 (63)

Since t is not explicitly present in Ki2 , the latter can also be

treated as a constant of the motion.

2. INVARIANCE OF THE DIFFERENCE _I - _2 AND BOUNDED MOTIONS

The presence of 81 and B2 in Ki2 occurs only throngh the combi-

nation 81 + B2. From this one readily sees that

_i2 _Ki2

_81 _B 2

which implies that

al = _2 (64)

and after integration results in the additional coplanar integral of

the motion

_I - 0'2 = Vl = _ JDIJ (65)

Unfortunately, this last integral does not provide any bounds on

the magnitude of the coplanar displacements, inasmuch as _I and _2

are not prohibited by Eq. (65) from growing individually as long as

their difference remains unchanged.

On the other hand it is clear that the validity of the present

fourth order theory would cease to hold long before the _'s have grown

to very large size, and that additional higher order terms in H would

have to be Included in the analysis. Equations (64) and (65) are of
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great use in those cases when _1 and _2 do not grow without limit.

Let us consider now the question of boundaries of _ . From

%K.12_ 2 = 2 4 _2 * "3_2

2 * *3 [ * *2 * *= 23.97 _lff2 - _Ki2 - .115_ 1 + 5.1fflQ' 2

_- 3.059_; 2 .02939_1 - .03146_ 2 (66)

We nOW introduce the new variable

o¢2

= _ (67)

and Eq. (65) into Eq. (66), which can then be written in the form

2

(_7D1) = f2(_), .n2(_) (68)

where

71 =

and

f =

112

:_ rL_3(_+ _)]_ for D1 >
0

I/2

* _L_3(__ 1>|_ for D 1
0

(69)

-(.2028- _4_, - .0801 ' 2 ÷ c_.t'nt DI > 0

(.2028 + _4)I_ - .0801 _2 + constant Vl <0

(70)

276



THREE-DIMENSION AL, NON-LINEAR RESONANCES

The constants in Eq. (70) denote the value of _(o) and are re-

lated to the value of the Hamiltonian Ki2.

The points at which the _ curve intersects the + or - branch of

the f curve

= • f (71)

&2 = 0 and, by Eq. (65), also _*. = O.
correspond to points at which

Reality of the particle motions requires that f2 _ 2

The gradual changes of the motion of the physical particle in

the xy space can be described by observing the motion of a representa-

tive mathematical point along a given curve _ in a plane in which f

and _ are plotted as ftmctions of _.

If the _ curve intersects both branches of the f curve or inter-

sects the same branch at two different points, then &_ and _; wlll

have finite values at intermediate points on _, which tend toumrd zero

as the representative point approaches the f curve. The sense of mo-

tion of the point is reversed every time one of the branches of f is

reached, so that the point continues to travel back and forth on a

given _ curve between its points of intersection with f. The turning

or extremal values of the molaenta or* are thus fixed by the values whic

assumes at the points of intersection of _ wlth _ f.

The geometry in the f(_ and _(_) plane is shown schematically

in Fig. 6.

The curves T_ in Figs. 6(a) and (b) represent bounded particle

trajectories in the xy plane. The tangency points P2'P3 at which

d _, f,
d_--- =_

and (72)

4: .-*

_1 = a'2 = 0

are equilibrium points in the (_i,_2) plane, and with the aid of

Eq. (66) can be shown to correspond to coplanar periodic particle
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orbits. Equation (66) requires that _1 + 82 = nff, which can also be

written in the form

ahS; + 3_28 _ + .06086t - n_ + 14.2 ° = 0

Reference to gq. (51) shows that this condition eliminates the

detuning term due to coplanar coupling and indicates commensurability

of the internally perturbed coplanar normal freq .... ies _ : _I + _I_;

and _ = _2 + _" The periodicity of the coplanar particle orbits

follows from here.

The equilibrltan is stable at point P2 and unstable at point P3'

where small disturbances may cause a displacement to a neighboring curve

such as _4 which causes divergence of the physical motion.

Transition from stability to instability occurs at points _nhere

_, = _ fn (73)

When D I > 0, f" does not change sign as can be seen in Fig. 6(a),

and from this follows that all the periodic particle orbits for which

_I > _2 would be of the unstable kind. For the case D 1 6 O, fn does

change sign at some value _ > 1 and we note accordingly the presence

of one stable and one unstable equilibrium point along the +f branch

in Fig. 6(b).

3. THE PERIODIC MDTIONS

When one solves the tangency Eq. (72) for the value of _ which

corresponds to every choice of DI, one can obtain an _I for every_ 2

found. In the _I versus _2 plane this solution curve represents the

so called "tangency locus" of equilibrlumvalues of ffl and if2 which

designate periodic particle orbits. This curve is presented in Fig. 7,

where we have chosen as coordinates the quantities lO_"-[and 10_'_2

(_i and 3_ 2 are in fact the associated "action variables"). On this

curve we have set the angular variables __2
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.,k "k "k _|O

_12 = B1 + B2 = I°r
.._,

(74)

This plot is seen to consist of two distinct branches which con-

nect at the point (1.12,0). The left hand branch consists of a seg-

ment of stable periodic orbits which is followed by a segment of un-

stable periodic orbits. On both segments _2 = 0. The unstable branch

on the right hand side of (1.12,0) requires a _2 = W.

Two more curves passing through (1.12,0) and consisting of left

haud and right hand branches are also sho_m in this figure. The lower

(solid) curve denotes the loci of intersection points P3 of _3 wlth the

second f branch. (For added clarlficatlon small inserts of the appro-

priate geometrical situatlon described by Plg. 6 are also dlsplayed

here in connection with specific se_aents of the curves.)

The dashed curve lylng close to the P3 locus represents the inter-

section of _3 _Ith the _ axis. On this curve _2 = _/2. The values

of _2 which allow stable motions to exist in each one of the domains

I - IV which are separated by the above curves are indicated in the

litre, and also by shaded regions in the s_a11 inserts from Fig. (6).

The axis _2 = 0 represents the locus of stable periodic particle

orbits which are traversed with a mean angular frequency differing but

sllghtly from _I" The stable periodic segments alon 8 which lO&; >>

10_--_lmerks those partlcle orbits which are traversed with a mean fre-

quency close to _.

Curves of D 1 = constant, intersecting all the above curves are

also displayed for a few selected values of D1.

4. FREQUENCIES OF TIE PERIODIC HOTIONS

In the present nonlinear treatment, except for the special periodic

motlorus mentioned above which are described only by one single normal

mode, all the other periodic partlcle orbits are generated by a super-

position of beth normal Iodas. Periodicity here is achieved as the

result of an adjustment of the _atural frequencies via the nonlinear
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coupling which occurs between the two modes and which makes them exactly

commensurable. The resultant frequency shifts Aw I and Aw 2 in the orig-

inal undisturbed frequencies _i and _2' lead to normal modes with modi-

t and t
fled commensurable (3:1) frequencies _I w2

s s
Wl = Wl + _I = 3w2 = 3(_2 + _w2) (75)

This point was also raised earlier in the discussion following Eq. (72).

The orbital period T is determined by the slower mode

2_
T = I

w 2

(76)

During this time T three cycles of the faster mode are completed.

E. Evaluation of the Frequency Shifts for Periodicity

For every point on the "periodic motion" curve of Fig. 7 there

exists a unique set of equilibrium values _IE and _2E"

The shifts Aw I and _2 can be estimated by writing

u_(l + 6:)t = 3_(I - _)t (77)

and solving for _l_l and w2_ _ from the relations

w

•* _Ki2 e

61 .... 02939 + _I

•* _i2 • t

B2 = T = .03146 + 3_282

_2

(78)

evaluated at _IE and 0t2E. From here one finds
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S.l ;E *-112.312= - C_lE _2E

• t * * *1/2 "1/2
Aw2 = - _2E2 = l'7_lE - 2"039_2E _ _IE _2E

(79)

where the upper sign corresponds to _2 = 0 and the lower to _2 = y.

*w
F. Variation of c s Near Equilibrium Points

For small disturbances from the equilibrium points P2 and P3 the

time dependence of _ can be approximated by means of a Taylor series

expansion of f and Tt around the equilibrium points.

Letting

I
f = fE + (_ - _E)fE + 2' ($ - _E)2fE + "'"

and 1 _E ) 2 (80)

and recalling that _E = rE" _ = fE* we can combine Eqs. (68) and (80)

to obtain (after approximating 23.97 by 24 for convenience)

24_ 1 d

(83)

whence

241Dlt_JfEJ(f_ - _) t
(84)

For a stable point such as P2 in Fig. 6(b), we have fE <

This makes the exponent in Eq. (84) imaginary of the form iwct and

indicates a slow oscillatory variation in _. For an unstable periodic

# > _ which leads to an exponential growth of c_ withpoint such as P3' fE

time.
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A few representative values of the period _ = 2_/_ are indi-

cated alongside the stable periodic segment in Fig. 7.

_Lc d_v_iopu_nL_ of the present sectlon can now be s_wamarlzed by

means of the following general conclusions:

1. On the assumption that the out of plane terms do not couple

strongly with the in-plane terms (which will be proven later)

it is possible to reduce the problem to an essentially 2-di-

mensional one.

2. Initial conditions which lle on an _ curve located to the

left of the limiting curve of type _3 will lead to bounded

motions of the particle in the xy plane.

3. Depending on whether the _ curve is tangent to the f curve

at a point such as P3 or P2' periodic particle motions of

an unstable or a stable type, respectively, may exist.

4. _le periodic orbits generally result from a superposition

of the two normal modes of vibration in which the nonlinear

coupling has brought about co_nsurability of the basic

frequencies by means of appropriate frequency shifts. For

special initial conditions, periodic particle motions con-

sisting of only the faster normal mode may exist.

5. In the neighborhood of stable equilibri_ points of type P2'

the mo_nta _I and _2 perform low frequency bounded oscilla-

tlons in tlme. Near unstable equillbrlum points of type P3'

the *'s will tend to grow exponentially vlth time, which

results in a large growth of the particle's motion in the

physical xy plane.
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Xl. ANALYSIS OF T}E INTERNAL OUT OF PLANE MDTION

The analysis of the out of plane motion is rather simple and

straightforward compared to the eoplanar analysis of Section X. We

shall investigate the coupling of _3 and _I in the region where _2 = O,

by neglecting the _2 terms in Eq. (61).

The reason for this particular decision is the result of hind-

sight, based on a prior preliminary study of the external effects on the

coplanar motion which disclosed the presence of a stable equilibrium

point _I _ O, _2 = 0, for the Sun perturbed problem. This will be dis-

cussed in more detail in Section XII.

Let us denote by F the internal terms left in the }{amiltonian

K of Eq. (61) when all _2 terms are dropped. We have then

F* = .I154_ 2 + .09035_I_3C 2 * * + .08893_i_ 3
(_i-83)

(85)

.002231_ 2 * *- + .074801_ 3 + .02939_ I

Let _3 = el - _3"

From Hamilton's equations we then obtain

•* = 2-.09035_i_3S2_3

• * = _ .09035_1_3S2_ 3_3 2-

(86)

This leads to the new integral of motion

_I + _3 = D2
(87)

with D 2 > O.
•* .*2

AS we did before for _2' we can now wrlte for _I
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(_;)24.(.09035)2_.'2z_2-i_ 41_F*_.,15,;2_.0889_;_

-3 ....... 1 - "....... 3J

We introduce the auxilllary variable _3

o 3

and end up again with the equation

( _3 y f2 _2

where this time

f = + _3(1 - (3)

and

f'(o) : :_ 1

F

.09035D_
- 1.277(1 - _3 )2 - .9843_3(I - _3 ) + .02469_

.32534 .50259

D 2 D 2 _3

At the origin, the first and second _ derivatives are

_'(o) = 1.5703 - .5025...___9> 0 depending on D 2
D 2 <

(88)

(89)

(90)

(91)

(92_

(93)

(94)
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_"(o) = _"(_3 ) = -.5366 < 0 (95)

T_t(o) < 0 if D 2 < .3201 (96)

and

_S(o) _ - I if D 2 _ .1955 (97)

The magnitude of the slope _s will determine the time history of

_3" In particular, if _t _ _ I then _3 will exhibit a circulatory

behavior, while a value of -I _ _t < 0 would lead to a librational

behavior.

An upper bound on _s can be established by making a reasonable

estimate for an upper value of D2. Such an estimate can be furnished

from some of the mathematical and physical considerations which underlie

the present analysis.

From a mathematical standpoint it is clear that in the binominal

expansions and truncations used to obtain the expression for the Ham-

iltonian H(x,y,z,t) of Eq. (21) it was assmned that x,y,z were small

compared to unity.

From a physical point of view it is not clear that relatively

large displacements away from the Moon would necessarily invalidate

the conclusions of the present analysis, but the large accelerations

resulting from large displacements towards the Moon or Earth could not

be tolerated.

If we assume that the displacements should be limited to values

x,y,z < .5 (say) then for the excitation mode _i we cn obtain from

Eqs. (36)

_1 .5< --f = .25

:%

i.e., c_ 1 < .0625
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and also

:_._.':.0625

SO that for these limits

D2 -_ .1250 _ .1955

The slopes of all _ curves are thus steeper than f'(_3) from

which follows that every _ curve will intersect both * f branches,

giving rise to a circulatory motion in 413 as indicated in Fig. 8.

¢

%

0

%

£>0I

,?i i

1

_3

Fig. 8: Geometry in (f,_3) and (A13,(3) space.
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Since l_'l>If'luo equilibrium points with _3 _ 0 can exist,

and consequently no periodic orbits in xyz space result from the nan-

linear coupling of modes 1 and 3.

The actual slope of any T curve would depend of course on the

value chosen for D2, subject to the limits mentioned earlier.

We may choose for example a representative value of _I = .006

(say) and assume _3 to be of the same magnitude (this _I is very close

to the actual coplanar equilibrium value of _I in the externally per-

turbed case discussed in Section Xll). Then we have

D 2 _ 2_ = .012 (98)

This results in a slope

.5026 -40.3 = tan-10
_' _ 1.57 - .01_ =

or

0 _ 90 °

(99)

In other words the D curve intersects the _3 axis nearly vertically,

fr_m_hich one concludes that _3 constant; thus, there is hardly any

esergy interchange taking place between _3 and _I" which shows that

the out of plane coupling is not very important in this problem, and

that the motion is dominated by the coplanar coupling.

That the out of plane coupling does not introduce any instabili-

ties when _3 << and _I is close to its equilibrlc_mvalue _I _ .006

conld also have been deduced directly fro_ the expression for F'in

Eq. (85). For very smell _3 it is sufficient to consider only the

terms linear in _3' and to evaluate the coefficients at _I _ .006.

F*The resultant Mathieu type }_miltonian indicates a parametrically

excited motion. Such Hamiltonians are discussed more fully in Appendix F,

(in connection with the solar effects on the coplanar motio_ examined in

Section Xll) but under the assu_ption that the values of _I and _2 are
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to remain very small (i.e.. coplanar particle motions for very small

perturbations from rest at L4).

If one applies the results of Appendix F to the present situation.

and notes that the coefficient of _3C2(=,_=,)pi _3 is smaller than that of

_3 one readily concludes that the parametric resonance present in the

out of plane motion does not lead to instability.
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XII. ANALYSIS OF EXTERNAL EFFECTS

I. DETERMINATION OF E_ILIBRIUMPOINTS

For a complete snalysis of the motion in the presence of the ex-

ternal solar effects, one must retain the c_plete expression for

given in Eq. (61).

From the discussion of Section XI it was seen that the _i,_3 in-

te_al coupling did not lead to any measurable transfer of energy from

the out-of-plane mode to the coplanar mode of motion, while from Sec-

tion X we have established the existence of an appreciable coplanar

coupling effect.

The major long term solar effect causes mainly an excitation of

the _I mode. The _3 mode d_s not experience any external excitation

to the order of magnitude of the terms retained. This latter state-

ment follows from the developments presented in Section XIII.

If a stable motion in the presence of the Sun is possible in which

_I,_2 and _3 remain small, it would suffice to retain only linear terms

in K* in order to determine long term effects. To linear terms we have

the simpler Emmilt_ian

* * * i*_
.02425_ I + .02412_ 2 + .07899_ 3 - .0256_ C 2 (I00)

which is of the Mathieu type j as indicated in Appendix F, and leads to

parametric resonance in the _I motion.

Since .02563 > .02425, the stability criteria of Appendix F indi-

cate that the motion falls into the unstable region of the Mathieu

plane, and that therefore to linear terms no motion can exist for which

_I remains very small.

From a physical point of view this means that the libration point

L 4 is not stable with respect to smmll perturbations, when the solar

force field is included, and that the higher order terms in K 2 must be

retained in any analysis.

The lack of stability exhibited by the linearized Hamiltonian does
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not preclude the existence of equilibrium points in the _* s_ce for

the complete llamiltonian. In view of the negligible effect of if3 on

...... r ............. ", _ _o uL _uLeLesu _o look for equilibrium points
W W*

for _3 = 0. Such points in the (ffl,_2) plane are determined by look-

"* ;ing for solutions to Hamilton's equations of the form _1 _ _ = O.

Once such points are located, it is then necessary to investigate

the type of equilibrium which exists there, and to identify the stable

ones.

This search is more easily carried out if one switches over to a

set of normal canonical coordinates (Q,P) defined by

/ 2%//_ 0 0 0

0 _ 0 0

0 0 2_1 0

0 0 0

s e

se

(lOl)

c e

After setting _3 = O, the two dimensional part of K , which we

denote here by I_, becomes

, 2 2 ,

* * * * *2 *2 *2 *2
23.974 (PIP2- QIQ2)(P2 + Q2 ) + _ (PI + QI )

.02 12 ,2) (p,2+ "--'2"_ 2 +q2 - "--"2"-- 1 -QI
(102)

The equilibrium points (Qe,Pe) are obtained from the solution of

the equations
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i . = 0 (103)

From Eq. (103) we have

23.97 *{ *2 *2) *4 P2_P2 + Q2 - .001379P I (104a)

_**:o: 5_1-.2 .2 3.o5_,_(P_+_2)2P 2 - -- P2_PI + ql ) + * *2 *2

23.97 ( *'2 **2 ** *) *4 3PIP2 + PIQ2 - 2P2QIQ2 + "02412P2

(104b)

+ QI_P2 + Q2 /

. 5_1.,.2 ._) .+._ .2)K * = 0 = + 3"059Q2 2 + Q2
2Q 2 - -- Q2_PI + QI

23.97 f_ • ** * *2 *'2\ *

VQ2PIP2 - QIP2 - 3QIQ 2 ) + .02412Q 24

(104d)

Equations (I04c) and (104d) are identically satisfied if we chose

Qle = Q2e = 0. For convenience we shall therefore restrict our search

to those equilibrium points for which

Qle = Q2e = 0 (105)
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For the above Q*'s Eqs. (104a) and (104b) give

.1154p_3 * *2 _ 5.810p;3 * = 0 (106a)- 2.55P1P 2 - .001379P 1

• 2 * *3 * *2 .02412P2 0 (106b)- 2"55PI P2 + 3"059P2 - 17"43PIP2 + =

One equilibrium point can be obtained by setting P2e, = 0 (which

automatically satisfies Eq. (106b) and then solving for Pie from the

relation

.I154P_ 2 - .001379 = 0 (I07)

Pie = .1093

which corresponds to (108)

file = .005975

w

The above value of @I is the one which was used in earlier sec-

tions when representative numerical values were used.

The first equilibrium point, which we denote by El, is thus speci-

fied by the coordinates

El: Q1 = Q2 = q3 = P2 = P3 = 0 _I = .005975

w

P1 = .1093 if2 = 0

_3 = 0

(109)

Another equillbrlum point can he found for which P2 _ O, all other

homogeneous coordinates remaining the same as for point E l . The values

of Pl and P2 result from the solution of the algebraic equations (106a)

and (106b), after P2 18 factored out from the latter, The coordinates

of the second equilibrium point Eli were found to be
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Eli: QI = Q2 = Q3 = P3 = 0

P_ = .1106 _I = .006116

P_ = -.003675 if2 = 6.753 x 10 .6

(11o)

The two points E 1 and Eli were the only ones readily found for

the present simplified conditions. A machine search of the complete

set of Eqs. (103) might reveal the existence of additional roots. The

periodic elliptic particle motion of mode close to w I corresponding

to conditions at E 1 has a semimajor axis of about 60,000 mi and a

semiminor axis of half this value. These values were determined by

--2 1/2

computing r x = Ix--2 + y _x where the w I modes of x and_y of Eq. (36)

were used, and the maximum determined with respect to _i_ _. It can

be shown that this requires that 8"422S2wI _i + 4"423S2wI_247-14°_I' = 0

and results in a value Wl_z 15"62°" The dimensionless expression

1/2, _i*for rma x then becomes rma x _ 3.2_/ and at m .006 amounts to

_:006 x 2.4 × 105 = 58,128 _ 60,000 in round numbers.roughly 3.2

In a similar mmnner one finds for the mmximum dimensionless dis-

placement in mode w 2 the semimajor axis rma x _ 9.1_and in miles

x105: × mi esrmax 9.1

It is of interest to observe that this result indicates the par-

ticles mean motion is synchronized with that of the Sun such that

their angular positions coincide closely whenever the particle crosses

one of the axes of the ellipse.

We recall that at equilibrium QI = 0 and hence _I = n_ with

n = 0,1"''. For n = 0, Eq. (53) gives

81 = 0 = .02939t + _i 8 + 14.7 - ¢ + (t

and from here

wi8 _ = _i t - .02939t - 14.7 + ( - (s

295



THREE-DIMENSIONAL, NON-LINEAR RESONANCES

J

Wllcn the particle crosses the major axis we had _l_i = 15.62,

and from the commensurability of angular velocities at El, (_I - .02939)

= I - m. Substitution above gives

15.62 + 14.7 = 30.32 ° = (I - m)t + £ - fs _

as defined by Eq. (B-9). Equation (17) then shows the Sun to be lo-

cated 30.32 ° below the x axisj and therefore closely aligned with the

major axis of the particle's orbit.

2. STABILITY OF THE EQUILIBRIUM POINTS

The stability of the slow variations around the above periodic

equilibrium motions in the xy plane can be dete_ined by setting up

the expression for the variation 6K* which results from taking small

displacements 6Q and _P* around the equilibrium values Qie = O and

Pe" Clearly, since E 1 and. Ell are equilihrlum points, the coefficients

of the linear terms in _P must vanlshj and on then obtains in three

dimensions
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-21 * * * * .01212616p;2 + _Q;2]+ P2e_36PISP2 - 6QI6Q2) +

+.012002[ p;2 .01281 [ p 2 (lID

Applying expression (iii) to point E l results in

* *2 *2 *2 *26K°.0013800 1 + 02 630Ql .0031740p2.003174 Q2

+ .040086P; 2 + .039496Q_ 2 (112)

Since for every value of i = 1,2,3 the coefficients of 6P i have
*2

the same sign as the coefficients of OQi (i.e., 0K* is either positive

or negative definite irrespective of the signs of 6P* or 8Q*) we can

conclude that point E 1 is stable for small disturbances in all princi-

pal directions. The period of the slow variations in 6PI,OQI is approx-

imately 83 months.

It is more convenient to retain only coplanar terms in 61<* for

the determination of stability at Ell. We then obtain the expression

* * *2

6K* = .0014116P_ 2 + .025638Q_ 2 + .O018388PI6P 2 + .0036526P 2

* * *2

+ 7.847 x 10 -5 6Q16Q2 - .0011508Q 2 (113)

If we now ass,_me PI and, QI to remain unchanged while we intro-

duce variations 6P 1 and 8Q 1 we have

8K* : .O014110P; 2 + .025638Q; 2 (114)

where 8Q 2 = ,20P = 0.

Thus 0K is positive definite for variatious in the first set of

coordinates and hence 6QI and 6P I remain bounded.

Repeating the same steps for _ and 6 while keeping Pl and
*

Q1 fixed gives
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_K*= .0036528P;2- .0011506Q;2 (115)

where5Pl = 6 = 0.

Since _K is not definite fo_ arbitrary choices of 8P 2 and 5Q2

we conclude that I_tnt EII is not stable in gP 2 and gQ2 _ and hence is

an unstable equilibrium point. The equilibrium for variations _P3

and bQ 3 was found to be stable, which is in agreement with the find-

ings of the last section.

The above conclusion could have been reached also more rigorously

in a somewhat lengthier fashion by writing down the complete system

of first order linear differential equati_as for 8Q and 6P* obtained

from 8K of Eq. (l13) j and examining the roots of the appropriate char-

acteristic equation. We would find that

6Q 1

6Q 2

o_

8P 1

6P 2

0 .002822 .0018381

i 0 .001838 .007304

= -.05126 -7.85-10 -5 0 0

-7.85"10 -5 -.0023 0 0 8P 2 /

(116)

st
A trial solution of the form e

equation

would lead to the characteristic

S 4 + 1.282.10-4S 2 - 2.031"I0 -8 = 0 (117)

which has one positive root because of the negative constant term.

Equation (117) thus bears out the conclusions reached from Eq. (I15).

A simple geemetrlcal description of the stable and unstable re-

glons in the 6 dimensional P _Q space is of courae not feasible. On

the other hand it is possible to take advantage of the fact that the

stable point E I is noticed to lie very close to the unstable point Eli.
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It is thus of _rticular interest to dete_ine the extent of the stable

regi_ around El, by ex_nding _ up to cubic powers in 6P* and 8_

around E l .

me intersection of surfaces of constant K _th the (P2,Q2)

plane, for a value of PI = .II, is shown in Fig. (9). The dashed

cu_e sh_s the se_ratrixwhich _sses thr_gh Ell and se_ratesthe

stable from the unstable regions.

In the physical xy plane, a point in the stable region gives rise

to slow variations of the ele_nts of the _riodic _rticle orbit cor-

resp_ding to E 1 . A pint in the unstahle region of the (P2,Q2) plane

would lead to large _rticle de_rtures fr_ the equilibri_ orbit,

and thus indicate a possible d_ergence.
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Fig. 9: Stability Regions in the (P2,Q2) Plane Near The

Coplanar Equilibrium Points.

300



THREE-DIMENSiONAL, NON-LINEAR RESONANCES

XIII. EVALUATION OF Tree EFFECT OF TI_ RESONANCE CAUSED

BY _ FORCED SOLUTION

We had alluded on page 23 to the fact that no forced soluticms

in z_ i.e., E. had been retained since they are of o(m 3) and would

thus give rise to terms of 0( 5 ) or higher in H when one went on to

derive the long period contributions.

A closer second look at the external z terms in H (°) disclosed

the existence of a very closely tuned forcing term in the linearlzed

out of plane z motion which could introduce perhaps small divisors

in the solution for _ and thus depress the order of magnitude of that

solution. This would introduce another important long period term

into the l_[ltonlan K. The resonance in question arises for example

from a term such as

2 I

x szs = -r13. _ sin i° sin [I.0040212t + E]

whichwould lead to a detuning of-_gnitude

1.0040212 - 1 = .0040212 (n8)

This value would introduce a much slower term in K than any of

the terms previously retained, and might conceivably require a redefi-

nition of the angular varlable B 3 introduced earlier.

The developments indicated briefly below disclosed that the z

resonance terms cancel each uther exactly, and consequently do not

contribute a term slower than the one already considered. No further

modifications to the analysis of the out-of-plane motion of Section XI

wore thus required. The steps leadlng to the above mentloned cancel-

lation were nevertheless found interesting enough to Justify their

Inclusion here.

The z portion of the external part of H (°) of Eq. (21) was

(o) 2[3 + _/_ys_Zs _ (v x /_y>Z + 1 C_y J'_ux>pzH(Z) = - [2r-_13 (Xs + ½ + " - (119,

301



TI-II_f:_I%I_AI:KI(:I_KIAI ! _I_KI I IklrAn nrt',_,kl Akt,s"l:_

For a coordinate system with its x axis pointing at the instan-

taneous position of the bloon, the angular velocity components ux and

_y -- o ...... j

_x = i cos _+ n sin i sin
(120)

_y = _ sin i cos _ - i sin

These are the same as Eqs. (B-3) except that 4o has now been re-

placed by _ =gnt + f - _ and g = 1.0040212.

The angular velocities _ and i can be expressed in terms of _,i

and the solar acceleration component W normal to the Earth-Moon plane

at the Moon's position, by means of the variational equations on page

404 of Ref. 9, in which a corresponds to (r12> here

r12 sin _ W

2
na sin i

[ r12 cos _ W

2
na

(121)

By our nondimensionalization convention na 2 = I, so that

r12 [Uy = --_--W sin _ cos _ - cos _ sin _7 = 0
(122)

and the angular velocity _ has thus no component in the y direction.

One can also write for D x

r12 _sln2_ + cos2TI] = (1 + p)W (123)
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A suitable expression for W can be obtained by differentiation

from the potential energy V s near the Noon. If we let x,y,z denote

small displacements from the instantaneous position of the Moon, we have

-', '2 1w = - _T,x,y,z__O _--f _ - g r 1
r13 x,y,z=O

)

__(<l+p+ + +z2)

xjy,z=0

= KsZs
3m 2 _ + 0(5) = 3m 2 sin i cos _ sin (_ - v') (124)

Zl 3

To sufficient accuracy then

_x _ W = 3m 2 sin i n cos _ slu (_ - v') (125)

(o)

To check if H(z) would in fact lead to the presen_)of small di-

visors in the solution for _ it suffices to check if H(z) contains

sloely varying terms of frequency .0040212 when we replace in it z

-and Pz by the homogeneous solutions z and .

(o) 3 m2 B3_ {sin (I.0040212t + C)H(z) = _ sin i ° v_3 cos

I [cos _+_/_sin+ _cos (I.0040212t + ,} + _- Vx _3 _I

(126)
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Since

f, _ s _ _ _ -I.0040212L -
s,n_,
_L_Ij

we may retain in vx only the dominant resonance term

Vx _ - _ m2 sin i ° sin (I.0040212t + () (128)

(o)

When Eq. (128) is substituted into H(z) of Eq. (126) and all the

terms combined it is found that all the long period terms cancel each

other exactly and only fast terms remain. From this one can conclude

that the forcing function of the linearlzed z equation does not con-

tain a resonance term which is close enough to introduce small divisors

into the forced response _ and thereby lower its order of magnitude

from o(m 3) to o(m 2) or less.

Based on the foregoing we can conclude that the neglect of the

contribution of _ to the long period terms (_H/_z)_ was consistent

with our convention of neglecting terms of order higher than o(m_).

This analysis shows that although the Sun has an appreciable long

term effect on the changes in inclination of the lunar orbital plane,

it has the same effect also on the orbital plane of the llbrating

particle, with the net result that any relative long term out-of-plane

responses vanish. Short period, fast, relative terms do not cancel

out though.
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XIV. SUMMARY AND CONCLUSIONS

In the present dissertation, the 3-dimensional stability of the

motion of a particle near the equilateral libration points of the Earth-

Moon system, in the presence of the Sun, has been investigated.

Because the inclusion of lunar eccentricity would have introduced

into the problem a larger nt_ber of internal and external resonances

than could have been handled by the present method of approach, it _s

found necessary to restrict the stability analysis to a lunar orbit

perturbed by the Sun but without eccentricity.

Four m_jor conclusions emerge from the present study. First,

small coplanar motions near L 4 or L 5 will grow large because of para-

metric excitation by the Sun, as a result of nonlinear resonance. In

fact, the growth of the energy in the faster normal mode of the linear-

ized theory is found to be governed by a Mathieu equation.

Second, the out-of-plane motion is not seriously excited by the

Sun, and has a negligible effect on the coplanar motion, which is the

dominant factor as far as stability is concerned.

Third, a stable periodic coplanar orbit can exist in the presence

of the Sun. It consists of a clockwise motion along the 1:2 ellipse

corresponding to the first (or faster) normal mode, and has a semi_ajor

axis of approximately 60,000 mi. The external nonlinear excitation

causes the mean angular motion of the particle to become synchronized

with that of the Sun. Thus to an observer located at L4 and looking

continuously in the direction of the Sun 3 the particle would appear to

move back and forth across his line of sight in the manner of a simple

harmonic oscillator. The times of crossing of the line of sight coin-

cide closely with the times at which the llne of sight is aligned with

the major or minor axis of the ellipse.

Fourth, the presence of the internal resonant excitation, result-

ing from the near com.ensurabillty (3:1) of the two coplm_ar normal

models makes the stability somewhat delicate. As a consequence, the

semimajor axes of the second lode is llaited to magnitudes less than

305



.... '.L--_',IV'L,'_'I"_L, NON-LiNEAR RESONANCES

approximately 2400 ml. For larger values the motion becomes unstable

and m_y result in very large displacements which would exceed the range

u£ _ppli_bil£Ly u£ Lhe present theory.

306



THREE-DIMENSIONAL, NON-LINEAR RESONANCES

Appendix A

soLAR GRAVITATIONAL GRADIENT CONTRIBUTION

Consider the term

1 r13 " r14

r34 r13

(A-l)

of Eq. (7), and decompose r34 into

_34 = r31 + r14 = _ (for simplicity) (A-2)

For (r14/r31) << I we can expand I/r34 into a Taylor series around r31

as shown:

r34

I =i----+- v 1 ]

]I/2 r31 r14 " 1/2

(A-3)

3

Ir14 =o

where

1

= __ a.d _31 " - r-13
br31

E-V_

=-_

CA-a)
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and

rl4
• V I J r13 " r14

r__}"2J 3• r13

_'14=o

(A-5)

where

I = unit diadic
=

Similarly

1.2 (_'14 " _14) v2 _ . 1]1,2 _, r14 " V r31/"

r14

= _ r14 + i31r31 - -'7 " FI

r31 r31 r31

, D(._,_.-._,_.y,_ _,,] <___>

Combining (A-l), (A-3), (A-5) and (A-6) and neglecting the first

term of the series, I/r13 , which mkes no contribution to the equations

of motion, we end up wlth the last term of Eq. (8) which is the expres-

sion of (A-6), and represents the solar gradient force near the Earth.
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Appendix B

T_ EXPRESSIONS FOR p(t) A_ v(t) FROM LUNAR THEORY

The expression for p(t) is readily obtained from Eq. (I), p. 281

of Ref. 7, after computing (a/r) -1 = 1 + p(t) = r12 and retaining only

terms o£ o(m 2) or lower. The term -.O0093 of our Eq. (15) corresponds

1 2 (a/r)-l.
to - _ m in the series for The semlmajor axis a is set equal

to the reference length D in our notation.

Derivation of the expression for v(t) requires a few more alge-

braic manipulations. We shall make use for this of Fig. 2 (p. 13) and

Fig. 4 (p. 38) of Ref. 8, which are combined for convenience in Fig.

B-I_ and also Fig. B-2 which shows the lunar orbital plane as viewed

from above (i .e., looking in the direction of the negative Z axis).

In order to facilitate the derivation we shall retain (in this Appendix

only) the notation and symbols of Ref. 8 irrespective of the use to

which some of the letters have been put in the main body of the present

report. Where necessary_ the corresponding letters in our notation

will be pointed out.

In dimensional symbols we now have

i Z

- i_ _slniITz _,)

_=nt+ ¢- _

(B-l)

so that

- +[_cos_o÷_,ioisin_o]
_= _n+ Vz)iz e

e

÷E_sioioos_o-_sln_o]i:e

(B-2)
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The dimensionless form of _ results if we set n = I in (B-2).

-- .-- .-.

Noting that iXe j lye, IZe are parallel respective to the unit vectors

ix' iy, iz of our L4 centered coorlndate frame, we have

_x = _ sin i sin _o + { cos _0

(B-3)

_y= _sincos% isin%

both of which are of o(m 3) or higher. The expression for _'z ca_ be

obtained by taking the time derivative of the true anomaly v in either

one of the expressions on p. II0 of Ref. 8 or Eq. (2), p. 28] of Ref. 7.

This results in the coefficient of iz of our expression (16).

With the ald of Fig. (B-l) it is also relatively straightforward

to determine the components of r13 in the ix, ly and [ directions.z

We refer the reader to pp. 38, 41, and 79 of Ref. 8 for a more de-

tailed presentation of the relations summarized here. For convenience

the following explanatory relations for the various angular arcs are

summarized below.

Ex or Ey = fixed reference line in ecliptic

mr(t) = v t - _ where x _ _ _ _ = arc of nodal regression

= x _2 + [_ A (measured in two planes) = yEA

¢ = _ EMo(o ) i.e., at t = o

s = tan MtM

v © xM t = ecliptic projection of xM

i =Mt_M

_{ = tan i _ sin i

_o = [_Mo = nt + s - [_

' Em'(o) at t = o if e _ o

One can then show that

( i s2 3 s4 ) (v v')cos Mm' = cos (v - v') cos H*M = 1 - _ + _ - ... cos -

(S-4)
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Z.)

/

EQUINOX

Fig. B-l: Lunar Motion Geometry in 3-Dimenslon.

H _ _x_

J_ " _EAN L_ER _TION

"is', XM'- Lu_I_R L_|TU_.

1J'= _R kmG_o_

= P_TION _ _RILURE

{U_D _Y us to OES_GH_'_E

A_C,LE aF TE.n/

C. - (J_ VECTOF,Ft_'C_E._ost

E__e, I,p

M°(t)

"_ X.,T. _

Fi E. B-2: Planar view of lunar orbital plane
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and since

s = (i - e 2 _ _21 ) _ sin _o + e_ sin ... + _i e2 sin ... + ...

(B-5)

(from p. 41 of Ref. 8).

while

s2 _ 2 __ sln 2 i -_-sin 2 i ° = sin 2 (508'43 " ) _ .008 << i (B-6)

we can approximate to sufficient accuracy

cos Mmt _ cos (v - v') = cos [nt + ¢ - nit - gt

+ e, e t times periodic terms]

cos [(I - m)t + _ - (t] + higher order terms

(we have divided by n = i) (B-7)

sin Mmt _- - sin [(I - m)t + ¢ - ct] + H.O.T. (B-8)

Define: _ = _Mm' = (I - m)t + ¢ - ct (B-9)

and note that

sin mtT = sin i sin _ m' = sin i sin (v' - _) (B-IO)

With the above relations we can now obtain Eqs. (17) of the text

x s = r13 cos

YS = - r13 sin _ (B-If)

z s = - r13 sin i sin (v' - _]) = rl3 sin i sin (_ - v')
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Appendix C

TAYLOR SERIES EXPANSION AROUND L 4

The steps needed in the expansion of the various terms in the La-

grangian L of Eq. (8) up to fourth order terms [i.e., o(m4)] are indi-

cated below. In dimensionless notation we have

r14 = rlL + r

and thus

2

r14 ffi

- I (I + p) Ix + _ (I + p) x_ywhere rlL = _-

_--(I + p)+ x_ + [_23 (i + p) + y_ + z 2 .... algebra

= I + p(2 + x +_ y) + (x + _ y + x 2 + y2 + z 2)

= 1 + (a + b) = 1 + I (C-l)

where a and b refer to the two terms following I.

-I
This enables us to write r14 in the form

-I [I + 1] -1/2 1 - I 3 12 15 13 5 7 14
r14 = = _I+g -_-_ +i-6 "g + "'"

(C-2)

-I after replacing x by -x
A similar expression applies also to r24

in Eq. (C-l).

Evaluate now the various terms in (C-2).

0(=5)

[12_: =/+ 2ab+ h2

2ab = 2p(2 + x + _ y) Cx + _/-3y + x 2 + y2 + Z2)
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= 2,L2(x + _y) + 3_2 + 5y2 + 2=2 + _/_ _y]

Terms independent of x, y, or z have been dropped since they don't con-

tribute to the final D.E.

b 2
= x 2 + 2_ x-y + 3y 2 + 2(x + _y)(x 2 + y2 + z 2)

+(2 2)2 2C2+ 2)2 4

neglect as H.O.T.

3,ab 2 -..t 6p(x + ,,/-_y)2 + o(mS)

b 3 4 (. + _y)3 + 3(x + V_y) 2 (x 2 + y2 + z2) + o(m 5)

[14] ool,b_cootrlbutos
b4 = (x + ,f,j-y)4 + o(m 5)

Combining the above terms and neglecting noncontributing factors

gives

-I

r14

3

+[(.+_,)2÷2(.+_,,(2+2+2).,_(2+:,_,)_
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+2(x2+y2)z2+z4_,,- _-_ {6p(x + /_y)2 + (x + _y)3

( )} 3,+ 3(x + vr3y) 2 x 2 + y2 + z 2 + _ (x + _y)4 (C-3)

Furthermore

r12 • r14 = (1 + p) 1 (1 + p) + x =

3 =
r12 (1 + p)3 = 1 + 3p + ...

Thus

r12 • r14

3
r12

1 (1 + p)-I + (1 + p)-2 _x - 2px + noncontributing terms
2

(C-4)

The Lagragian L in Eq. (8) is made dimensionless by multiplying

it by D/(_ I + _2 ). Let us multiply Eq. (8) by this factor and then

set

_1+_= 1

D= 1

and introduce the dimensionless quantity

_1 (c-s)

while from before we had defined already the quantity

by Eq. (12).
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It then follows that

_i;_=I _,

Consider the contribution VEM of Earth and Moon to the potential

energy term in L of Eq. (8)

l- 4]P'I p, +

=- --+r2 L rl2 JVEM r14
(c-7)

We recall that only the x coordinate changes sign when we use the ex-

-! -1

pression for r14 to obtain r24. A convenient expression for VEM can
-I

be obtained by nmking in r24 the following substitution for all odd

powers of x

-x 2n+l = x 2n+l - 2x 2n+l (n = 0,1)

When use is made of Eq. (C-6) and the lengthy algebraic manipula-

tions are carried out, one ends up with a VEM given by

VEM = i x2 _z_ (I - 2_) xy
5

y2
1

z 2
-_. +_ -

.(o) 3

+ 16 "

37 x4 123 x2y2 3 x2z 2 33 2 2 3 4 3 4+ _ - "_"4-- + 1--6 + i-=6y z - -[,/-_y - _ z

+ P - _ +E- y -_- + (1- 2_) xyj_s
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The solar contribution V s to the potential energy term in L is

found below.

r13 = Xsi x + Ysly + Zsi z

r13 • r14 = (I + p) x s + XsX + (I + p) Ys + Ys y + ZsZ

Now

( )212 m 2 3 _13 2 rlV s = - _ " FI4 _ (C-9)

2r13

so that only terms of o(m 2) or lower must be retained inside the bracket.

After dropping all terms which do not contain the particle's coordinates

we get

P

/<_13 " r14) 2 " (XsX + Ys y + + (Xs + 4_ ys)(XsX+ ysy+ ZsZ )

will lead to o(m 5) terms (C-10)

and

2 x 2 y2 z 2
r14 _ x + J_y + + + (C-II)

Substitution of (C-IO) and (C-11) into (C-9) results in

m2J 3 2
V = - _ [(XsX + ysy ) + (Xs + 4_ ysXXsX + ys y + SsZ)]

s 12rl 3

I [(x + */_Y) + (x2 + Y 2 Z2)] I
-_ +

(c-12)
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The Hamiltonian I! is defined by the relation

(c-13)

w_e re

HM= = - = -" (c-14)

t:,Tl_j [o#J u,, "k rl_

denotes the identity tensor. The equality p = r14 is a consequence

of the linear dependence of r14 on the velocity components x,y,z, in

the rotating coordinate fran_. Writing r14 as

r14 = rlL + rT r + _ x r

rlL = rlLllL + le x rlL

= -_ + _
rL" xL + yly z

we get

" r14 = ... algebra ...

y - y(1 + v z) ix

+[_236 _'(1

[_2 3 I " - XUy](I _ p) t'x - _ (I _ p) Uy + z + yv x 7 z

(c-15)

We n_w introduce the g_omenta P vfa Eq. (19), solve for r from (C-14)

and obtain the expressions
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I

Y

1

D ] [4 -= Pz + (' + p) + x Uy - (I + p) + yj ux (c-16)

Also from Eq. (C-14) and Eq. (19) we can write L in the form

_23) ½)2 1 p2i + _ (Py _ z -L = _ <Px - 2 1 + + - VEM V s (C-17)

If we now substitute (C-17) into (C-13), make use of (C-14) and

(C-16), and neglect all the terms which do not depend on the momenta

P or the particle's position _ we end up after a lot of algebra with

the expression for the IIamiltonian II presented in Eq. (21) of the text.
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Appendix D

CANONICAL TRANSFORMATION TO SLOW VARIABLES

We shall outline here the steps which underlie the canonical trans-

formation from the variables _,_, to the slow set t,Sl These variables

are analogous to polar coordinates where _ corresponds to an amplitude

and B to a phase shift. We shall find it convenient to use also a car-

tesian set of generalized coordinates q,p in terms of which the trans-

formation relations viii be developed.

Let

S = S(q,p') = S I + S 2 (D-l)

be a generating function from the set q,p to a second slowly varying

set qt,pt where S I will be selected to remove from H the 3rd order

terms (all of which are short period) and S 2 to remove all 4th order

short period, and define

Sq = q--, _-'2--, = (1 x 3) row matrix of partial
1 derivatives of S

SqT = (3 x 1) colu_ml matrix of partial derivatives

Then

s
p = p + S T(q,p t)

q

q = q - S (q,pt)

pit

(D-2)

Let

(D-3)
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and expand S T and StT in a Taylor series around the values of qS,pt.

To second order in Hand _p

(q',p') + Sq,Aq + [ , Aq + -.

(D-4)

The expressions for q = q(q, pt) and p = p(qtpt) can then be de-

veloped via (D-2) and (D-4)

- _ (q',p') + Sq,Aq + _q + ''

P

q' - S tT(q',P') - S(qt,p')Aq + --. (D-5)

P paTqt

In.order to prevent carrying unnecessary terms along let us esti-

mate the order of magnitude of the above terms. Since S will be used

to perform a transformation of variables in Htwhlch contains terms of

o(m 3) and o(m 4) then the lowest terms in S will be of o(m3). We might

also use the notation o(x 3) since the x,y,z coordinates are the ones

to be transformed.

Let us view q as equivalent to 8 and p as equivalent to _.

Then the derivatives result in the followlng orders of magnitude

S = o(H3) __ o(x 3) = o(_ 3/2)

S "_ S = o(_ 1/2) = o(x)
P

Sq "-_ S 8 = o(a, 3/2) = o(x 3)

S T -* O(Sp) = o(x)
Pq

(D-6)

We assume also that
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_q _ o(x) + higher order terms (D-7)

_/ t-h t- e-'h_ _^ _ ,.Toe ___u-= no_e ............. _ _ IT , Lq = _(x 5) and after o?erating
q q

on it with _/_p, it becomes o(x 3).

Equation (D-5) can then be written as

Aq Aq + o(x 3) "'" (D-8)
= _ Spt T - SpiTqt

and terms of o(x 3) are not carried along. Thus to o(x 2) we can write

the following relation

_I + SpiTq'_ Aq -_ - S aTp

which can be inverted to solve for Aq

-I

:_ + + o(x 3)
Aq -_- _I + Spffq,] Sps T - Spa T SpiTq, Spa T

(D-9)

where I is the identity mstrix.

From Eq. (D-2) we also note that

Ap _ O(SqT) = o(x 3) + H.O.T.

Expanding for AP as was done in (D-9) for Aq we find

Ap - + o(x 5) (V-lO)
_- Sqa T SqiTqt SpIT

The partial derivatives of H can also be treated slmilarly to the

partials of S. Thus
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H = o(H)
q

(D-f1)

For a scleronomic generating function S _ have the transformation

relation for Hamiltonians

K(qt,p S) = H(q,p) (D-12)

and expanding H in a Taylor series around q, pt gives

g(qa pa) = H(qa pt) + HqS /_i + Hpt Ap +

+ _ _qtT H(qazPt) + "'"

I I_qTHq STq,= H(qt,p a) + HqtAq + HptAp + _ Aq

+ _qTHqaTp I Ap + _PTHpITq , _q + ApTHp rip, AP1 + °'"

ffi + + S aT ,S tT1 + Hpt[Sq_r - Sq_qlSp_IBH(qn,p #) Hqt[-Spa T P q P

+_I-SPI'FSplSp"qfrlcHqlTqtI-SplT+SplTq"SPITI

"4"_I-SpI+Sp,SplqlTIDHqaTp"[SGaT.- Sqr£q'SpaT 1

+1[Sql - SplSqlqlTIHpaTql I- Spat + SplTqtSplT 1

+_ISql - SptSqlqITIHp.'T.plISqlT- SqlTqlSptTl + ''"

_-z3)
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The subscript letters A,B,C,D have been introduced merely for

ease of subsequent identification of the respective brackets [ ].

We recall chac

H : H (°) + H 3 + H 4

o(x 2) o(x 3) o(x 4)

(v-x4)

where H 3 contains x 3 terms and H 4 denotes the 4th order terms like x4,

m2x2,0x2 etc. This breakdown into H 3 and H 4 w_ll be made use of in

choosing the relations defining Sl(qt,pl) and S2(qS,pt).

We shall assume S 1 to contain only o(x 3) terms and S 2 only terms

of o(x4), because we shall select S 2 so as to remove all 4th order

short period terms from the Hamiltonian K.

]A -_ - [SlpsT + $2 - + Sl +

= _ S I - S 2 + + +
pi-[ pt T SlptTqtSlp# T SlptTq eS2p tT S2ptTq sSlp tT

o(x) o(x 2) o(x 2) o(x 3) o(x3)

_-15)

Thus to o(x4), which is the highest order retained in all terms,

U^-,H(°.) [- sI -
Hq..[

q [ p al'

(D-16)

Similarly, the follo_rln8 expressions can be derived

_B "_ Sl + $2 - S1 S 1 + H.O.T.
qaT qaT qATq, pit

@-17)

+ o(x4)
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r]_l + H.O.T.H ,[ _ ...t.1.1(0) _SI + $2 " $1qrj_q,Slp + H3p'S1q aT
P P L q tT qFf

(V-18)

Subst_tut£n8 _-16) and 0)-18) t:htough (D-22) £ttCo (D-13) xesults

£u the exptesSlou

K-H(°) + H3 + 114+ H(°)_L_q S1p_T -S2pl'j_ + Stpn'I_q'*Slp'f]

•+ 1K(°) _; 1 "*'S2 -Slqe, l_qlSlptTl + l:13p.'Slq"T
" H3 71 _ p q_£ qrf

q P

1 ,_q sl _ -
+ _. Slp

+ _ Slq?_peSlqa,f

1 S, ![(°¢_. .,$1 _ -
_-pt q--p q--
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Recalling the definition of the Poisson bracket

[H,S] (D-24)
= HqSpT - ltpSqT

and applying it to the terms of Eq. (D-23) one can obtain after a

length)' series of manipulations and combinations of terms the expres-

sion

K ,,_o)+,,_+,,_pO),gl]_E,,_o,,_],[,,_,_l]

g + g H(°),sl],S (D-25)

in terms of q/ and pt only.

Let us choose for the definition of S I the relation

[. (°),sl_ -. 3 = o (D-26)

and thereby remove H 3 which contains only short period terms.

Then

K = H(°) + H4 + ½ [H(°),SI ISI ] + ½ [H3,SI]- [H3,SI_

[ q ptTJ

L q, p,Tj

1 "

[ [H3,SIJ [H(°),s2] (D-27)

The third and fifth final terms in Eq. (D-27) can be combined

into the one bracket
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(D-28)

We now define S 2 such as to remove all remaining 4th order short

period terms from K. Now both H 4 and [H3,S I] will contain both long

period ( ) and short period (s-p) terms, which can all be eliminated

by letting S 2 be defined via

I _ (O),s 2 _ [ Sl ,S 1 rr] = 0
H4s'p - _H3'Sl_s.p q p J

(D-29)

This leaves the long period form of the Hamiltonlan K as

1
K = H (°) + % - _ _H3,SI_ (D-30)

and if s and 8 t are selected as the canonical variables, rather than

and (t + 8'), the long period perturbation Hamiltonian K' is obtained

as

1
K_ = H4 - 2" [H3'SI] (D-31)

To this expression one must still add the contribution from the

linear forced solutions _,_ due to H (°) as indicated in Eq. (49) which

then finally leads to the relation presented in Eq. (48).

Comparison of the K from Eq. _D-31) with the K presented on p. 63

of Ref. 6 shows that the two Hamiltonians are not alike. This differ-

ence can be traced to the particular way in which the time dependent

generating function Sl(q,pS,t ) of Ref. 6 was defined there by means of

an equation in the mixed variables q,pt, instead of first carrying out

the transformation to the new set of coordinates q• ps shown in this

appendix in Eqs. (D-9) to _D-13).

As a consequence of the use of mixed variables, some of the terms

which would have appeared from the additional Taylor series expansion
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over q were thus missing and only one half of the terms of the Poisson

bracket [H3,S1] of Eq. (D-31) showed up in the function _ introduced

i, R=f. 6. _l_ absence of these adaltlOuaL terms prevented the cancel-

lation of nonpolynomial terms (i.e., terms which do not arise from

binomial expansions such as (x + y)n where n is some finite integer)

t3/2 ill2
and led to the presence of an extraneous term such as the _i or2

term in Eq. (I0) of Ref. 6.

The source of the incorrect results, which can arise when one oper-

ates with mixed variables anytime terms higher than of first order are

retained in the Hamiltonianj were recognized by Prof. Breakwell, who

then suggested that the correct procedure in choosing the function S 1

would be to transform first to the new set of coordinates qt pt. The

implementation of this suggestion led to the developments presented in

this appendix, and avoided here the presence of the inadmissible non-

polynomial terms.

The derivation of the 14athieu type llamiltonlan in Appendix F does

make use of mixed variables. Howeverp the results obtained there are

correct since only linear terms were retained in H.

A last comment should be made regarding the slow variables qS,p0,

or _sjBt. It turns out that it is impossible to prevent the presence

of some higher order long period terms in S2 which arise because the

term S 1 tS ItT may contain also long period parts. Prom this it fol-
q P

lows that in the expression for, say, q

q = qt _ S1 + _ $2
pit Slp JTq tSlp eT PltT

(I)-32)

the last two terms may also make some long period contributions to q,

which would tend to contradict the assertion that qa (and also pt) are

the only long period variables. This situation is unfortunately un-

avoidable and cannot be circt_vented by redefining S 1 or $2, since the

elimination of the extra long period terms in qS or pt via S would

automatically result in the introduction of unwanted higher order short

period terms into K that g would be incapable of suppressing simultaneously.

328



THREE-DIMENSIONAL, NON-LINEAR RESONANCES

Fortunately this impasse is not too serious since the bothersome

long period terms in Eq. (D-32) are of o(m 4) or higher and may be

safely disregarded within the extent of the present theory inasmuch

as ql does not appear in a linear manner in H. They would pose a prob-

lem however if the present approach were to be extended to encompass

some of the higher order terms currently neglected.
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Appendix E

SO_ ILLUSTRATIVE STEPS IN THE DERIVATION OF

_owG- P_RIOD TEP_>___ IN K s

The steps leading from Eq. (48) to Eq. (50) required by far the

most time consuming, tedious and exacting manipulations and computa-

tions of the whole investigation. We shall indicate here only briefly

as an example a few representative intermediate steps so as to pro-

vide the reader with a feeling for what is involved here.

First a general remark concerning the Poisson bracket [H3,SI].

In the expanded form, and using the polar canonical variables _ and

_, this becomes

[H3'SI] = H3_SI_: - H3_tSl_t
i _i

(E-l)

where the tensor notation for surmnation over i = 1,2,3 has been used.

The same bracket, when H 3 and S I are expressed in cartesian coordinates

x,y,z,Px,Py,Pz, can also be written as

+ .... H3PxS ix ..... H3p Slz[H3'SI] = H3xSIPx + II3ySIPy z

(E-2)

which indicates that the bracket will give rise only to polynomial

terms of the form x2p 2 X3py,z' y4 etc.

From this it follo_#s that when one evaluates the long period terms

in the polar coordinates used in Eq. (E-I) one must be careful to ob-

serve that only polynomial type terms should be retained. Thus, one

terms like 5_: 2, 7_ 2_ ... etc. or slowly varying
can obtain secular

##
terms like (-..) _i_3 cos F(5 m3)t + -.-] or (-..) _I/2_3/2x

cos [(m I - 3_2)t + -..], but not terms such as (..-) _:3/2_#_/2 x

cos [(w I - 3_)t + --.] because such a term could not arise from products

3 3 which are the only kind that could give riseof the form xlY 2 or YlX2

to long period trigonometric terms with a frequency w I - 3w 2. The

quantities xl,Y2, etc. represent the m I term in _ and the w2 term in

of Eq. (36), respectively.
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This polynomial requirement is not satisfied in Eq. (I0) of

Ref. (6) which contains the term 16.2_ 1/2 cos [.0609t + '_I:I

+ 3_2__ - 4.4s°].

We shall indicate now a few steps in the evaluation of one of

the long period terms in the Poisson bracket.

where

where

H 3 = H32 + H33

H32 = coplanar (x,y) terms in H 3

H33 = out-of-plane (z) terms in H 3

Similarly

For convenience we let

(E-B)

S I = Sl2 + S13 (E-4)

from Appendix D.

as the momentum conjugate to the coordinate t.)

Then

Sl = _ ejtH3dt (E-5)

(We recall that [H,S] = - _S/5t when H is treated

(E-6)

[_3--_I,Sl = [LH32 + H33, S12 + S13_ =

°[.32.s12]+ + *

Let us take the first bracket in Eq. (E-6), and consider for example

only the component H_ISIB 1 in it. It can be shown that it arises from

the product of the two parts
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R32_ I

I/2 3

=_I _M(_I +_2) +_ N(3_a3- 7a4)}A

-I/2 2_I - l N(33c3 _ 7c4) }
+ _1 _ "_.H(ct + c2) + _ C

(E-6)

and

s12B1
= - el (a_ + a2) + -

D

1/2r I + b;) + N(33b;- -

where we have dropped for convenience the primes on the _'s and _'s.

........ s t defined
The quantities a I a4, bI • b4_ c I ... c4 are

-- =in terms of -- _ t _ e

(1) ;= Wl_ , _2) A1C¢I)'____+ A2C(2 )_and y_1,62-ArC(I)+61 + A2C(2)+62, wher
u_ and AI,A _ ..- are obtained from Eq. (36).

M and N are two constants defined as M = _/_/16 and N = (l - 2_)/16.

In terms of the above constants one can obtain the following ex-

pressions

= = A2Al/1-- 1 1 )s 1 1_C(I)+61 + +al al Z _ C3(I)+61 g C(I)-_ 1

• A AtA r _ _ C2(1)_(2)+611h = 1 1 2Lr_-_-_.c2(1)+¢2)+_1+

C2(I)_(2)_6+ _ AIA2 C2(I)+(2)+b2 + 2u_.. - w 2

(Z-7)
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and similar expressions for all the other quantities inside the ( )

brackets.

We observe from Eq. (E-6) that in the Poisson bracket, the eoef-

_ would arise from the product of brackets { ]A l_ith [ }D'ficient of

and in the same manner we note that the

coefficient of _i_2 -_ results from [ ]A. [ IF; []B "[ ]E; { ]C'{]D

,, 1/2 3/2
_I _2 -_ results from {7 1B'{ IF; [ }C" { }E

,i 2
_2 "* results from { }C" [ }F (E-8)

Products of brackets [ } as indicated in Eq. (E-g) arise in all

the partial derivative products of H 3 with SI, and must be summed up
n m

for every combination _._. to obtain the final value of the coefficient
i ]

for that particular combination of _'s.

For example, to obtain the coefficient of _ in H32_ISI2BI we

have

2 = 3 " _
(_I: - [ }A []D - 2- {M(al + a2) + N(33a3 7a4)}

7
(E-9)

where the following relations among the a's apply here

= ' a 3 'a I a I = a 3

• 7

a 2 = a 2 a4 = a 4

(E-IO)

Expanding and using the appropriate relations for the a's (not

shown here) gives
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2 + + _

(E-] ])

2

= 3 1t2 ^IA1 _ + c26 4" +g g + al_l _ + C26 i-_

(m-12)

3,_i(a I + a 2) (33a 3 1 3 ,3 9 + 8 C38 _- C/,I- 7a4) = _ 3 _ A1A 1 C61

i 5 # I0 + _ alAl _2" + _ C3_i- 7 _ AIA I _-- C61 C61

(E-J3)

I 1 .2. t4/3_33a3 ,a4)2-_÷ 089_IA_

+ 49{1_ A I - 5

Ic2)14621 AIA142  cl)I
(E-14)

t I

When the numerical values for AI,AI,A2,A2,C61,C261, etc. are sub-

stituted into Eqs. _-12) through (E-14) and all the terms added, one

obtains the result

_92.871_x21 (E-15)

This same, or a similar, procedure must be repeated for every

combination of _'s which arises from all the terms of the Poisson

bracket.
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Appendix F

MATIIIEU TYPE HAMILTONIANS

Consider the near-resonant Mathieu equation

X + W2oll + T_ cos 2w to (I + _)_ = 0 (F-l)

where _, _ _ i. The effect of the trigonometric coefficient is to

introduce a parametric excitation term into the simple harmonic oscil-

lator model.

It is easily seen that as f _ 0 a resonant forcing term will arise

in case a perturbation solution is attempted_ after the X _°) solution

to the equation

+ W2ox = 0 (Y-2)

is substituted back into Eq. (F-I) to provide the next higher term.

The Hamiltonian of system (F-l) is

I

H = _ [p2 + w2X2] = H(O) + H t

w = Wo[l + _ cos 2Wot(l + _)]I/2

(F-3)

X,p = generalized coordinate and momentum_ respectively

H (°) = Hmmiltonian of simple harmonic oscillator of frequency w
o

H t = perturbation Hamiltonian (for _ << I)

The solution corresponding only to H (°) is

X(0) =2_--_sin w0 (t + B) (F-4)
_o
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where _,_ are constants of integration.

When H t is included, _ and B become functions of time t. It is

these basically tell us the most about the "averaged" long term behavior

of the system.

The canonical transformations of variables shown next serve the

purpose of suppressing all short period terms in H. We assume that

and _ can be decomposed into short period and long period (_t,BS) com-

ponents, i.e.,

Q, -b Q,I -J- Q,

s.p.

8 -_ 8' + Bs.p.

Introducing X (°) into the Hamiltonian H t

Hs I 2 2 2wot (I + f)= _ %_X cos (F-5)

and rearranging terms gives

1 B) } (F- 6)- _- cos 2Wo(_t -

The last term with angular velocity 2_oE << 2w ° is of low frequency

and thus gives a contribution to the long period part of H t.

Let this term be designated by _t

H' = - _ cos 2Wo(Et - [B) (F-7)

Note that _ still contains s.p. terms so that _t still is not the

final form of the desired long period Ksmiltonian.
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To obtain the D.E. for _t we introduce a generating function

S(_t,B,t) of the Hamilton-Jacobi equation which, to first order terms

can be written in the form

S = _'_ + _SI(_',B,t ) CF-8)

in terms of the new momenta t and the old coordinates _. Thus

= t _SI
_ = _--_ +'n_T

B' _S _SI

=_-,= _+ _ _,
(z-9)

relate the old and new coordinates and momenta. _t,Bt form a canonical

set with respect to a long period Hamiltonian K I, such that

_' = _ _K__i'

_' (F-lO)

where

_S (F-II)
KS ffi Ht + _-_

The Hamiltonian K t of Eq. (F-II) is treated as a function of the

coordinates t_t and t, after the transformation relations (F-9) are

substituted into the right hand side of (F-If).

To linear terms only

H#(u,B,t) = II'(u' + _S18,%t) --_ S'(_',8,t) + H.0.T. (F-12)

and thus
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KS _ }It (fft'_'t) + ]t(ut'_'t) + _1 + lt.O.T. (F-13)
sp

t

T_e function S 1 is chosen in such a way as to eliminate all s.p.

terms from (F-13). We thus require

_S I + H_p(_t,b,t) = 0 (F-14)
t

from which results

O/! Ot I

S I = 86o( 2 + ¢) sin 2Wo(2e + _t + _) - 4wo( I + c) sin 2_ot(l + e)

(F-15)

Expanding _ around _t in _t of Eq. (F-13) gives, again to first

order

K t = _l(cl,_s,t ) = _ cr_____cos 2Wo(ft - B I) (F-16)

with the aid of Eq. (F-7).

Equation (F-16) defines a long period, time dependent, Mathieu

type Hamiltonian.

St abillty Analysis

The differential equations for t and _t

raatrix equation

are summarized by the

). ,8' _;o (F-17)

Rather than solve Eq. (F-17) directly for _* and _t it is more

S* * Iconvenient to introduce a further generating functions (_ ,8 ,t)
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so as to eliminate the explicit dependence on time and thereby trans-

form K: to a new llamiltonian K* which is a constant of the motion, i.e.,

K = K ° = constant.

Let us define a variable 8" by the relation

_* = B s - _t (F-18)

and then take S to be given by

s =*(8' - ct) (F-19)

Since

* = 8' 8*S. - (t =

and

S i = _/ = cy*

the two variables _* and _* are canonically related to the new Pmmil-

tonianK* which becomes

K* = K: + St = K: - E_* = - ¢ cos 2Wo_* - f_* (F-20)

That K* is an integral constant of the motion is evident from the

fact that

d-y-= =--_ --_
b8

= by Hamilton's equation = _ + -- = 0

.'. K = K O = constant of the motion
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The stability or instability of systems governed by Hamiltonians

of the form (F-20) can readily be established based on a comparison

of the --agni_uJ_a of _he _o=_i_=,,_ v_ _* _L_d _* _u_ 2_o_ i, (F-2O).

The relative magnitude required of these coefficients for insta-

bility or stability to exist can be determined as shown below 3 and the

conclusions then checked by referring to the known stability regions

of the _Sathieu plane.

From Eq. (F-20) we obtain the differential equations for _*

"* _ _ (F-21)
2 sin 2w °

8_*

and squaring,

.*2 _ o 4 _ I - K ° + ___
(F-22)

after sin 2 2WoB* is replaced from Eq. (F-20) and the constancy of *K

iS made use of.

The condition necessary for _* to vanish is obtained by setting

the right hand side of (F-22) equal to zero, i.e., at the intersection

of the two lines.

Y g o

(F-23)

This is shown in the next sketch, Fig. (F-l).

From this sketch we see that for,_*o > _cr* and _o TM 0 the variation

of _ is bounded by the lines y = • _ if 4E/_ > I, thus implying a

stable motion, while if 4E/_ < i, _* grows without limit.

Hence, if
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SLOPE

/

Fig. (F-l): Stability Conditions for Mathieu

Type Hamiltonians

4(

-- > 1 -D stability exists

(i.e. • x- bounded)

49
< 1 "_ instability exists

(i.e., x -_ ao as t -_ _)

This leads to the conclusion that the motion is unstable if in the

Hamiltonian K* the coefficient of * is smeller than the coefficient

of a, cos 2Wo[8 .

The above conclusion is also borne out by considering the _thieu

Equation in the standard form,

d2v

+ (a - 2q cos 2z)v = 0
(F-24)

Referring to gq. (F-l) and introducing a new time variable
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tt
= Wot(1 + () + _-

and (F-25)

= U:oti_ + f)d'_

Equation (F-l) reduces to (F-24) if

1

(1 + ()2

and (F-26)

q = .__..3.__= __a
2(1 + ()2 2

The stability boundaries of the Mathieu plane (q,a) in the vicin-

ity of the region a _ 1 are shown below (see for instance p. 114 of

Ref. Ii).

.5LOee 21"1!,

N_I _ i Z

c. i --a - I * o -_ q + ""I

pERIODiC _OLUTION

G|ON 8OUI_D/_E& _HIC_ CAN

2 _. RppI2oY, IMRTEO BY

I q / 5TRRIGHT IJNIL5 NER£
r_! "_ss t --• - t - q - _ TRE FOtNT(0,1)

J , ,

_V2 _ 2 q

Fig. (F-2): Stability Boundaries in Mathleu Plane (q,a)

On se 1 the slope (da/dq)q_+0 _ -1.

The slope of line N - N t is, from Eq. (F-26), (da/dq)N_NS = 2/_,

and q - _/2 for a - 1 (pt. 1).
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As the value of (a) changes from 1 to 1/(l +_ )2 1 - 2e + 3E 2, point 1 trans-

lates along line N - N' to either point 2 or 3, depending on whether the solution remains

unstable (pt. 2) or enters the stable region (pt. 3).

Comparing the values of q on se i and N-N' for the same changeAa- _ -2_ + H.O=T.

we have

On se 1 qse _- Aa = (-I) (-2_) = 2e

q=0

On N-N' qN --:2 + : - rl_

H.O.T.

Hence, if qN > qse' i.e., if_/2-_'_> 2,, or 4e/_ 7 < 1, point 1 moves to point 2

and indicates as unstable solution. This is in aggreement with the conclusion reached

earlier via the Hamiltonian approach.
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6.

7.

8.
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